
AFIT/GCS/ENG/93D-20

AD-A274 030

6w

rTl

ObjectSim - A Reusable Object Oriented
DIS Visual Simulation

THESIS

Mark I. Snyder, Captain, USAF

AFIT/GCS/ENG/93D-20

93-30989

Approved for public release, distribution unlimited

93 i; o 22

AFIT/GCS/ENG/93D-20

ObjectSim - A Reusable Object Oriented
DIS Visual Simulation

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force institute of Technology

Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science In Computer Systems

Mark I. Snyder, B.S.
Captain, USAF

December 1993

Accesioh For
N"ns CRA&I
DTIC TAB
Uiia'.Nou'.cj'j
JiJstiricütion

ßy
Distnbutfon/

Av;'i|r(|

Dist

H

D

■Ci'es

AvaH ,.;■,/;,

DTIC QUALITY INSPECTED 9

Approved for public release, distribution unlimited

Preface

This research designed and implemented a reusable model for I tributed Interactive

Simulation (DIS) visual simulations on Silicon Graphics machines using the Iris Performer

library. The model was implemented in C-H- using extension by inheritance to provide a

customizable simulation architecture. The model was applied successfully to four simulation

projects to reduce their development cycle time and increase their capability.

The visual simulations implemented using the architecture met many goals for

capability, adaptability, and maintability. The student developers using the architecture all

reported good productivity due to the object oriented nature of the architecture. Since this

research has the potential for creating new simulation applications quickly, it should be a focus for

future rese^ h efforts aimed at bettering the capability of DIS visual simulations.

I owe many thanks for the help and encouragement I received in doing this research. I

would like to thank Lt Col Pat Lawlis for letting me have the freedom to explore my ideas and

for helping me in gaining acceptance for them. Also, she helped keep my research focused and

on track. I thank Lt Cols Phil Ambum and Martin Stytz for trusting in the promise of object

oriented design and reuse, and trusting me with the core of their simulation projects. I thank

each one of the student developers, Maj Mike Gardner, Capt Matt Erichsen, Capt Bill Gerhard,

Capt Brian Soltz, Capt Kirk Wilson, and Capt Andrea Kunz for trusting their projects to an

unproven idea and putting up with configuration woes. I also received much help from Mike

Jones of Silicon Graphics, who always had the answer for my Performer questions. Finally, I

thank my wife Roseanne and Jonathan and Timothy for their patiance and understanding when

I had to work and couldn't be with them.

Mark I. Snyder

Table of Contents
Preface \\

List of Figures vi

List of Tables vii

Abstract viii

I. Introduction 1
1.1. Overview 1

1.2. Research Motivation -I
1.3. Rendering Overview 3

1.4. Data Display Overview 5

1.5. Device/User Interface Overview 7

1.6. Network Interface Software Overview 8
1.7. Problem Statement 10
1.8. Process 10
1.9. Scope 11

1.10. Research Approach 13

1.11. Research Goals 14

1.12. Support 15

1.13. Measurement and Validation 16
1.14. Document Overview iß

II. Current Research Overview 18
2.1. Overview 18

2.2. Method 19

2.3. Academic Literature Reviews 19

2.4. Current Industry Reuse Practice 25
2.5. Conclusion 28

ill. The ObjectSim Concept 31
3.1. Overview 31

3.2. Initial Analysis 31

3.3. Identification of existing applicable work 33
3.4. Object Manager 37
3.5. Other Existing Work 39

3.6. Reusable Applications 39

3.7. The ObjectSim Framework 40

iii

3.8. Viewer 42
3.9. Flyer 43

3.10. ObjectSim 44

IV. ObjectSim Design 45
4.1. Design Process 45

4.2. ObjectSim Documentation 46
4.3. Class Simulation 46

4.4. Class View 48

4.5. Class Player 49

4 6. Class Flt_Model 51
4.7. Class Pfmr_Renderer 53
4.8. Class Terrain 54
4.9. Class Modifier 55

4.10. Initial DIS Interface 57
4.11. Improved DIS Interface 58
4.12. Overall Design 61

V. ObjectSim Applications 62
5.1. Introduction 62

5.2. Basic ObjectSim Simulation 63
5.3. Virtual Cockpit Instantiation 67
5.4. Satellite Modeller Instantiation 69
5.5. Lessons Learned 70

5.6. Effectiveness 7-)

5.7. Lessons Learned 73

VI. Measurements and Performance 77
6.1. Graphics Lab Metrics 77

6.2. Reuse Metrics 77

6.3. Performance Measurements 81
6.4. Geometry Management 82

6.5. Overlay GL Drawing , 33
6.6. Device Handling 34

6.7. Multiprocessing 85

6.8. Frame-Critical Processing 8g
6.9. Shared Memory Locking 87

iv

6.10. Network Interface 87

6.11. Compiler and C++ Language Issues 89
6.12. Conclusion 90

VM. Conclusions and Recommendations 92
7.1. ObjectSim 92

7.2. Accomplishments 92
7.3. Architecture Problems 93

7.4. Geometry Management 94

7.5. Future Enhancements 95
7.6. DIS at AFIT 98

Appendix A - ObjectSim Application Developers Manual

Appendix B - Sample ObjectSim Programs
Appendix C - ObjectSim Class Header Files

List of Figures
Figure 1 - AFIT Visual Simulation Projects 2

Figure 2 - Developing a Simulation with Past Tools 4

Figure 3 - Developing a Simulation with New Tools 5

Figure 4 - Visual Simulation Display Requirements 6

Figure 5 - Visual Simulation User Interface Requirements 8
Figure 6 - Network Interface for DIS Simulators 9
Figure 7 - Software Parameterization Methods 27
Figure 8 - High Level Graphics Lab Requirements 34

Figure 9 - Format Independent Performer Operation 36
Figure 10 - Network Interface Requirements 37

Figure 11 - Initial Reusable Simulation Model 41
Figure 12 - Viewer Multiprocessing 43

Figure 13 - ObjectSim Requirements Separation 45

Figure 14 - Simulation Class Diagrams 47

Figure 15 ■ View Computation and Jitter Removal 49
Figure 16 - View Class Diagram 50

Figure 17 - Player and Attachable_Player Diagrams 51
Figure 18 - Flt_Model Class Diagram 52
Figure 19 - Pfmr_Renderer Class Diagram 53
Figure 20 - Terrain Class Design 55

Figure 21 - Modifier and Subclasses Diagram 56

Figure 22 - Initial Network Interface Subsystem 59

Figure 23 - Improved Network Interface 61

Figure 24 - High Level ObjectSim Composition 62
Figure 25 - Virtual Cockpit Partial Design 68
Figure 26 ■ Satellite_Modeller Partial Design 71

VI

List of Tables

Table 1 - Graphics Lab Development Environment Probleme 32
Table 2 - Basis Requirements for Graphics Lab Simulations 34
Table 3 - Software Requirements for Network Interface 38
Table 4 - ObjeotSim Projects in Graphics Lab 63

Table 5 - Development Improvements with ObjectSim 73
Table 6 - Developer Time Expenditure Survey 79
Table 7 - Software Sharing in Graphics Lab 80

Table 8 - Capabilities Contributed or Reused 81

Table 9 - Geometry Complexity Performance Effects 84

VII

AFIT/GCS/ENG/93D-20

Abstract

This research designed and implemented a reusable Distributed Interactive Simulation

(DIS) visual simulation architecture for Silicon Graphics platforms. The goal was to research

software architecture technologies and to create a design and implementation using these ideas.

The architecture was designed using object oriented techniques to provide the ability to

customize it via inheritance extension. The resulting design was implemented using C++ and

applied to several DIS visual simulation projects in the Graphics Lab at AFIT. The

architecture, named ObjectSim, was successful in its goal of providing a reusable core for the

DIS visual simulation projects in the Graphics Lab at AFIT. It provides simulation developers

reusable capabilities in the areas of rendering, data display, device interfacing, anu DIS

network interfacing. The projects designed and implemented with ObjectSim exceeded their

research goals. Data on reuse effectiveness and several different performance areas was

collected.

vm

I Introduct^n

/./ Overview

This research investigated methods of improving the process of creating visual simulations. I

designed a reusable software analysis and design model on which to base current and future

visual simulations, and implemented this model using the C++ language. This research used the

latest high performance software and hardware tools from Silicon Graphics, Inc. to aid in the

implementation. The results of this research, in the form of reusable analyses, designs, and

software, are a basis for future work in visual simulation.

1.2 Research Motivation

The Air Force Institute of Technology (AFIT) is involved in research to help determine

military uses for rapidly evolving visual simulation technology. A visual simulation is a computer

generated environment that allows a human participant in a simulated reality to see objects in the

simulation as if the participant were actually there. Examples include flight simulation, a

simulated view from a tank or a ship, or a simulated automobile. In the Graphics Lab at AFIT,

several simulations exist or are being developed which use this technology (Figure 1). Since the

lab is working on so many similar projects, there are many benefits to be gained through software

reuse.

Though reuse has been applied to the efforts in the Graphics Lab in the past, no methodology

or process existed to organize or foster reuse of past work in a standard way. Since thesis

students have limited time to become experts in graphics programming, the more past effort they

can reuse, the more they accomplish in their research. These two factors led to the formulation of

Page 1

a small research group to work specifically in the Graphics Lab to apply software engineering

methods. The goal was to improve the software designs, software maintainability, and student

productivity in the simulation research efforts . This research was a part of that group's effort.

Existing Long Term Future Long Term Chert Term
(non-thesis)

Tomorrow's
Reality Gallery

Figure 1 - AFIT Visual Simulation Projects

Creating a visual simulation has traditionally been a lot of work. These simulations require

complex software to be written to manage graphics drawing (rendering), as well as to simulate

vehicle dynamics, or moving objects in the scene. Also, software to communicate with various

input and display devices is becoming increasingly complex with the introduction of head mounted

displays, voice recognition, d?ta gloves, and other user communication devices. As simulators

begin to interoperate over networks, software to manage this communication must be written.

There are many needs for software in the simulation reabn. It is important to make an effort to

capture past work, apply as much reuse as possible, and work smartly. This thesis covirs four

areas where reuse is important in visual simulation: rendering, data display, device/user interfaces,

and network interface software.

Page 2

1.3 Rendering Overview

In the past, some efforts have been made to reuse rendering software in the Graphics Lab

(Bru91:Chs 1-5). In this thesis, rendering will refer to the process of showing the world to the

simulation participant in the most realistic way possible. The rendering reuse efforts attempted in

past years had some success. In fact, much of the existing code in the lab to implement rendering

in visual simulation was based on a suite of code and tools called GDMS (Graphical Database

Management System). However, new software methods to accomplish rendering (SG92) and

building three dimensional models (SS93) created the need for more work in this area. Much of

the impetus for this effort came from improvements in vendor software which alter the way

simulations are developed (SG92:Ch 1). The Iris Performer software library provides a powerful

way to create simulation software for Silicon Graphics platforms. Major software improvements

in three-dimensional modeling software have also changed the way simulations are created

(SS93:Ch 1). Past reuse libraries in the Graphics Lab have been tailored to much less capable

rendering and modeling tools than now exist. Figure 2 is an illustration of the past process.

In this past year, the Graphics Lab at AFIT has begun to use a popular tool called Multigen

and its associated model format to create models and scene databases. Multigen is de of a new

generation of tools for creating three dimensional polygonal models and building scene databases

from them (SS93:Ch 1) A scene database refers to a collection of three dimensional models that

form a scene in the simulation. An entire scene database can now be constructed using Multigen.

This is a departure from past methods used in the Graphics Lab. Multigen's "Flight" format for

three dimensional models is an emerging standard for storing object representations.

PageB

Figure 2 - Developing a Simulation with Past Tools

Since the release of Multigen, the vendors at Silicon Graphics have released their Performer

software library, which is a collection of high level C language routines to use the Iris workstation

efficiently. (SG92:Ch 1) This library is also well suited for using the databases created by

Multigen in visual simulations. Together, these advanced software products define a new way to

create and populate visual simulations for the Silicon Graphics workstations. The simulation

development process with these tools is illustrated in figure 3.

The newer method of creating the simulation involves more work with the Multigen tool lo

create the database hierarchy, and a corresponding reduction of complexity in the rendering and

database management side of the software. Other than the Performer übrary of C routines, no

software was available in the Graphics Lab which could be easily reused for application building

with these new techniques. Since the Performer library offers no class based C-H- interface, it did

not provide enough of a standard interface to support commonalty of design for software using

the library. Also, Performer still leaves the simulation design up to the application developer.

To get the maximum reuse from Graphics Lab software development efforts, the lab needed to

Page 4

use common designs as much as possible. This thesis describes the application framework

approt ch I applied to facilitate a common design for the simulations.

Creates & Composes

[Database)

[Composite'] ^Composite
L Model J I Model zX —■

Multigen
Stored
Database

Silicon Graphics
Iris Performer
Software

Converts
this to
graphics and
renders

Figure 3 - Developing a Simulation with New Tools

1.4 Data Display Overvieu

A second major area of work for visual simulation developers is software to display

information to the participant. Displays report information on the status of the simulation back to

the simulation user. They include instruments in a cockpit, position, speed and orientation

displays for a fly-through type simulation, data displays showing information about entities in the

simulation, and any other visual element used to report simulation status to a user. They are

sometimes a part of the scene database, but often are implemented separately because of their

complex textual and graphical requirements. Display requirements can comprise a substantial

portion of the work involved in writing visual simulation software. This makes them an ideal

candidate for software reuse. Figure 4 shows some typical display requirements for a visual

simulation.

Page 5

In a virtual reality environment, where the simulat'on user may wear a head mounted display,

this problem of reporting status is difficult to solve. Consider the problem of displaying cockpit

instruments to a pilot of a simulated cockpit wearing a head mounted display. As the pilot turns

her head, the instruments should not turn with her, but should remain in their correct location

relative to her. One solution is to render the instruments in the scene database as dynamic

simulated objects, as discussed above. This solution tends to introduce too much complexity into

the scene database to allow for fast screen updates. This problem is typical of the requirements

for immersive simulations, which place the system user into the scene, often through the use of

head-mounted displays or other non-screen based methods.

Texi drawn in 3d Text overlays scene

\
View: Pt A

<^F15 X:100
USA -h Y: 200

Z: 100

Plane Status Base
1 MR Dahran

HUD MFD/RADAR
Icons

Dials, Gauges
\

Immersive Simulation

Text in tabular window

Console Simulation

Icons in
overhead
display

Figure 4 - Visual Simulation Display Requirements

Another problem in an immersive simulation is the necessity to simulate real, complex displays.

A modem weapons systems has a very graphically oriented interface. To properly create any

man-in-the-loop simulator requires the ability to display status to the weapons system operator in

a reasonable, usable, and believable format. Display requirements will quickly escalate. A toolkit

Page 6

of reusable display components, comprising both rendering and a useful interface to the

underlying simulation, is almost a necessity for much serious work in this area.

For screen based simulations (console simulations), the display requirements are also heavy.

Console simulations typically display information to the user using common techniques such as

tabular displays or displays overlaying the graphics in a scene. Data may appear in tabular format,

or in an overhead view with icons. These display techniques are not commonly used with

immersive simulations, but are more common to such familiar systems as command and control

software. Typically, console simulations require extensive window management and data

presentation software to be written. This is another area to concentrate on when considering a

reusable solution for simulations.

1.5 Device/User Interface Overview

User input comprises a third major area of software efforts for visual simulation. User inputs

include devices such as head tracker, spaceball, mouse, and keyboard. They may also involve

traditional user interface areas such as buttons, sliders, etc. Past thesis efforts have created some

reusable code for device interfaces, and much of this is in use in the lab. Figure 5 shows some

representative user interface requirements for visual simulation.

For console simulations, user input may come from spaceball, mouse, or, commonly, graphical

user interface (GUI) toolkits such as Motif. This means a robust simulation design must allow for

many different interfacing methods without breaking the design. Common problems here include

user event handling approaches, windowing, and performance impacts from 'expensive' GUI calls

and functions.

Page?

Tracker

^

Oataglove
Spaceball

r "\

^1

, n

Throttle & Stick

O
O
o

a a

GUI Toolkit

Immersive Simulations Console Simulations

Figure 5 - Visual Simulation User interface Requirements

For immersive simulations, the common interfacing techniques change dramatically. Since an

immersive enviromnent attempts to give the user as reahstic an experience as practical, common

techniques used to bridge the gap between human and computer are not enough. Typical

interface challenges for these simulations include data gloves, voice commands, head tracking,

boom devices, and platform specific interfaces, such as throttle and stick. Again, a robust design

and reuse can reduce the software workload significantly.

1.6 Network Interface Software Overview

The network interface for a visual simulation refers to the software required for the simulator

to function with other simulators over a network. For the Graphics Lab work, the simulators are

designed to send and/or receive the Distributed Interactive Simulation (DIS) protocol, which is a

standard network interface format used heavily within the Department of Defense. The network

interface for a simulation has two main components, send and receive. The send portion of the

interface formats information about the sending simulator into protocol data units (PDUs) which

Page 8

are sent out over a network. The receive portion of the interface reads these PDUs from the

network and displays the entities and/or information about them in the simulation.

mmmm

Network

ion f

4
Send Only Simulation j Network Players

Network Events

DIS PDU Traffic

Simulator
Status
& Events

Network
Players
& Events

Read Only Simulation
Read - Send Simulation

Figure 6 - Network Interface for DIS Simulators

A successful and efficient network interface comprises many different problem solutions. A

network interface will have to manage coordinate conversion from network standard coordinates

to simulation coordinates, maintaining fast network read rates, maintaining smooth entity

appearance when PDUs are not continuous, maintaining a large database of entity 3D models, and

sending/receiving events (e.g.; detonations). This research investigated methods to integrate these

various tasks into an understandable, object oriented network interface capa^dty for DIS

simulations.

Fase 9

1.7 Research Overview

In this research, I have applied software engineering and reuse to the visual simulations in the

AFTT Graphics Lab. I analyzed the requirements for visual simulation in the areas of rendering,

displays, device interfaces, and network interface as a basis for the reusable design model I

created. I created corresponding implementations using C++ to provide a basis for several visual

simulation research projects. I also designed and implemented useful reusable software pieces to

fit into this design, and supervised their application across multiple visual simulation projects. I

collected a set of metrics on performance and reuse effectiveness to validate my approach.

1.8 Process

There are many powerful tools available to aid in creating simulations, but their introduction

into the Graphics Lab at ART must be managed. Tools introduced too quickly, or without a

thorough understanding of their power and intended use, may not help software development.

Also, much of the work in the Graphics Lab is based on some prior reuse efforts, and may need to

be migrated to use the new software and models. Migrating to use new technologies while not

having to start over is one important challenge of this research and of the graphics lab software

engineering effort.

A development environment must allow software developers within it to reach their goal. The

environment's success is defined by how well it facilitates those goals. For the Graphics Lab

visual simulations, these goals are influenced by two m ->rs: the parent project and the

transience of the developers (students).

The research sponsor gives direction, goals, and funding to the Graphics Lab to support an

ongoing effort in visual simulation. This large scale simulation project involves a concept known

Page 10

as Distributed Interactive Simulation (DIS). DIS allows multiple simulators in geographically

separate locations to interact and wargame with each other. The Warbreaker program is an effort

to apply DIS to a multifaceted battlefield environment to research training and weapons system

effectiveness by using multiple, independently developed simulation projects. AFIT is developing

several simulation research efforts as a part of the Warbreaker program. Because of the strong

sponsorship provided for this research, the resulting simulations are expected to meet goals for

performance, capability, and extendibility. Also, they need to be incrementally developed to allow

demonstrations and a fast feedback loop for refinements.

In the Graphics Lab, the research is performed by students working on a Master's thesis,

largely during a single year. This means each student has a limited amount of time to actually

make a research contribution and produce or enhance a simulation. Also, students typically learn

only the basics of the programming language used during their thesis cycle. As a result, the

language is misused and underused in much of the existing work. The development environment

should aid new student developers in learning quickly and in performing quick design and

implementation of their projects.

1.9 Scope

This research is more than just conceptual. This means an important criterion for success is

that the resulting software contributes significant time savings to the work in the Graphics Lab.

The research in the Graphics Lab is sponsored and has specific goals it must reach, as discussed

above. Any software engineering concepts used must immediately contribute to the construction

of a working simulation, or risk losing acceptance by the simulation developers and sponsors.

Page 11

To exploit the new performance and modeling software now available, I created an application

template, or reusable design, for visual simulations created with the new software technology.

This software provides an abstract method for writing new simulation software, with a clearly

defined programmer interface to enable new simulations to be written. This work builds on

previous reuse efforts in the Graphics Lab, while extending them to encompass newer

technologies like Performer and Multigen.

I used ideas from Model Based Software Engineering (DIp89:1) to study the effectiveness of

these concepts in the Graphics Lab. The application framework, called ObjectSim, provided an

implemented version of an abstract meta-model (reusable system model) for the particular

simulation environment I am working in. These concepts are covered more in later sections.

I also researched methods of parameterizing the reusable display and simulation software.

Parameterizing means providing information to software to allow it to configure itself to solve a

problem. I used methods of parameterization to provide a flexible enough simulation framework

to encompass diverse simulation requirements. I studied the effectiveness, efficiency, and ease of

use of some various parameterization methods in the context of working with developers using

ObjectSim.

A major goal of this research was to leave the school with a toolkit it can use to create

simulations and add capability to them. The goal was to improve development time,

maintainability, and overall design for the simulations in the lab. To that end, I have made several

attempts to pass the knowledge I have about customizing, adding to, and using ObjectSim. These

include the ObjectSim Application Developers Manual (Appendix A) and several example

programs to help get developers started (Appendix B).

Page 12

The ObjectSim design is a reusable analysis model for visual simulations. The initial

implementation was targeted for Silicon Graphics machines. Both hardware and toolkits will

change over time. There are several approaches I discuss for migrating work and removing

machine dependencies.

1.10 Research Approach

To design and write good reusable systems, the first step is a well thought out design. I used

the Rumbaugh Object Modeling technique to capture the analysis and design steps of the

Software Engineering process. In addition, I used some of the concepts of designing software

based on models outlined by D'lppolitoCDIpS^S) to construct models of the s .mulation

application template and other software that can be instantiated to build simulations. Model in this

sense refers to a method to describe the behavior and structure of the system, not a

three-dimensional model. Instantiating a model means filling in the specifics needed to define a

solution to a particular problem. The ObjectSim design model evolved as the system was built,

and reflects the structure of the completed software.

Since the Graphics Lab uses C and C++ for it's current software, I used C++ as the

implementation language for the software. This provided some advantages. I used the C++

features which support objects, data abstraction, and inheritance to make as direct a translation

from the application model into executable software as I could. I concentrated on preserving

data abstraction with the language, since managed complexity is an important key to creating

reusable software that is accepted by future users.

A large part of this research involved searching out technologies and existing solutions that

can be used in the Graphics Lab. An example is the Silicon Graphics Performer library. Another

Page 13

area of research was working with the Wright Lab Avionics Division to reuse some of their flight

simulator software on our Virtual Cockpit project. I also surveyed past work from the Graphics

Lab to identify reusable software.

Since work has been done commercially and within other government and academic circles, the

Graphics Lab naturally stands to benefit if it can profitably use this work.. The Graphics Lab

software engineering team, as the reuse and software engineering element within the lab, was

responsible for managing tool and technology introduction into the lab. In this sense, the group

functioned as a tools group. Tools groups operate in a software development environment to

facilitate technology introduction, create advanced designs and test them, and perform other

advanced engineering tasks. Since tools groups are only loosely tied to a particular project

schedule, they can "blue sky", or investigate technology too risky to incorporate in an important

development before being validated. For this research, a testbed application was developed and

maintained to develop and validate new capability without perturbing existing simulation projects.

Finally, the team attempted to foster the use of some basic software engineering concepts

throughout the Graphics Lab. This included working from designs, reviewing and sharing each

other's work, and the aforementioned tools group to foster technology introduction and advanced

designs with broad applications.

/.// Research Goals

This research studied the effectiveness of parameterized software architectures on the creation

and maintenance of visual simulations. The result was a set of reusable software models, designs,

C++ classes, and sample applications that provide the basis for current and future Graphics Lab

work in visual simulation. These reusable pieces should contain components for a software

Page 14

toolkit to support rendering, displays, devices, and network interface in visual simulation.

Students using a reusable design like this should be able to begin writing simulation software in

much less time than before. Since students are only at AFIT a relatively short time, tools like this

should really help more to get accomplished in the lab. Also, this research provides a good

case-study analysis of the parameterization methods discussed above and their effectiveness in

visual simulation software.

The practical goal for this research in the Graphics Lab was to provide the tools necessary for

entry into a new stage in its simulation development work. By providing a high level toolkit

designed for an environment such as this, researchers were able to focus on the advances their

research provides, rather than detail work involved in solving routine simulation software

problems.

1.12 Support

The support environment for this thesis was already in place. The lab has the machines,

software, manuals, and compilers to provide enough tools to accomplish the tool building portion

of the research. I b^d good access to Silicon Graphics vendor software and manual support, which

the lab has. I also had access to several contacts who have experience in the latest software tools

I used.

To support the overall goals of the Graphics Lab and the tools group, a form of; itegrated

class library and configuration management was put into use to provide a common set of

development tools for the lab. The tools group had the support of the research faculty and the

acceptance of the other students, which aided greatly in accomplishing our goals.

Page 15

1.13 Measurement and Validation

I studied the efficiency, maintainability, and usability of the ObjectSim framework from several

perspectives. These include performance characteristics, storage and memory characteristics,

usability studies and examples, code size and complexity comparisons with similar projects, and

maintainability of the ObjectSim projects. The goal was a set of metrics which showed the

effectiveness of this approach.

Any work in real-time simulation is performance bound. Often, this is viewed a drawback to

using structured programming, object oriented programming, or any other 'inefficient'

programming techniques. One intent of my measurements was to show the impact of using

advanced C++ features like inheritance on simulation performance.

The more difficult aspects of the measurements are the benefits of our object-oriented

approach. I have included development metrics and reuse data to attempt to show the benefits of

the application framework on simulation development. These metrics are collected from four

different thesis research projects which used ObjectSim as the basis for their design.

1.14 Document Overview

Chapter 2 of this thesis is a review of literature and industry practice, as it relates to this

research. Chapter 3 reports on the initial analysis and background woik I did to prepare for the

main research. Chapter 4 presents the design of ObjectSim in depth and development notes for

the different pieces. The emphasis is on the meta-model which ObjectSim captures and its

aspects, dependencies, etc. Chapter 5 presents some sample instantiations of the model, including

the Virtual Cockpit, Remote Debriefing Tool, and Satellite Modeller. Chapter 6 is a record of the

validation metrics collected and a discussion of performance issues in visual simulation. Chapter 7

Page 16

is a summary of the research accomplishments, along with recommendations for follow-on and

future development of the architecture and its instantiations.

Page 17

II Current Research Overview

2.1 Overview

This chapter will explore current research in the area of reusable architectures for building

domain specific software systems. The study is motivated by the current effort in the AFIT

Graphics Lab to design and implement a reusable architecture to support visual simulation. A

reusable architecture is a reusable framework for designing and implementing a software system

(Lowry91:647). Domain specific refers to the notion that many systems designed to automate or

speed software development limit the class of problems they solve. For instance, a domain might

be command and control systems, or banking systems. This notion of a reusable design has also

been referred to as a meta-model, or reusable design model.

Reusable architectures provide an attractive methoa for the introduction of software

engineering into new environments. This is because they help the system developers by giving

them a reusable, customizable design for a class of problems, rather than a methodology or

complex tools to master. This can mean relatively quick success for developers using this

approach. Also, many developments can benefit from the work done on one reusable

project.

For real-time interactive simulation systems, such as those created in the AFIT Graphics Lab,

performance is an important criterion for the finished software. Any software engineering method

applied in this domain must not significantly slow down the finished product. For this reason, I

will include a look at some current literature about C++ and object oriented design and

programming, since the majority of visual simulation software is written in C or C++ for

performance reasons. Also, the C++ language gives a direct implementation of object oriented

Page 18

design, which is a useful method for constructing a reusable design model. Other object oriented

languages, notably Ada9X, are also candidates for implementing an object oriented simulation

design, provided their performance can be shown to be adequate for the high frame rates desired.

2.2 Method

I have explored the current state of the art for reusable systems fust from the perspective of

current academic papers and textbooks. This will provide some theoretical underpinnings for the

research and explore some current efforts through a spectrum of software engineering topics

related to this work.

I have also explored the state of reuse in current industry practice in this Chapter. This will be

based on my own experiences in development environments, and some other references

including periodicals and books. Because of the nature of this research (fusing advanced software

engineering techniques with real developments), I feel a look at current practices of software

professionals is also beneficial.

2.3 Academic Literature Reviews

Lowry (Lowry91) presents software architectures alongside many other current research areas

in software engineering. He presents a likely path of evolution for software architectures, domain

analysis, and other forms of automating the software process (Lowry91:646-650). This path

includes various development paradigms software designers will follow as technology improves to

encompass such methods as automated software design and code generation and expert system

support for the software development process. He defines megaprogramming as the process of

developing software with very high level components, and indicates that future system developers

Page 19

will use increasingly larger and more abstract components to build their systems (Lowry91:646).

He also points out that late binding, a feature found in true object oriented programming

languages (Str91:36), increases reusability but decreases efficiency of a software component. He

writes that the late binding features of artificial intelligence languages are the basis for many

current systems which support large scale reuse. These systems can be used for system

prototyping, but do not generate efficient production software (Lowry91:648). He indicates that,

in the future, software development systems will provide the ability to transform these inefficient

but highly reusable systems into efficient programs via methods such as program synthesis

(Lowry91:649).

Lowry also discusses two related notions which come closer to describing current industry

efforts to create efficient, reusable software. Application generators use simple techniques, such

as filling in software coding templates, to enable system developers to reuse designs and

implementation (Lowry91:637). Software architectures are much more advanced. This area of

research includes such topics as domain or application specific programming languages,

automated transformations to produce efficient code, and encapsulating domain knowledge for

use by designers (Lowry91:647).

Bhansali and Nii (Bha92) describe generic software architectures within the context of their

Knowledge Assisted Software Engineering (KASE) system. KASE is based on the concept of

meta-models, or reusable designs (Bha92:3). Some set of these reusable designs are stored in

KASE, which allows the designer to pick an architecture matching his problem description and

step through the design process to create a specific design for his problem.

Page 20

The authors propose a formal description of a generic software architecture as a collection of

modules which require customization to be useful in a specific solution. (Bha92:9). These

modules, before being customized, represent a partial set of design decisions usable across the

target problem domain (Bha92:10). These modules appear to be analogous to objects in an

object-oriented design. Customizing the modules completely represents all of the design steps for

the specific application, and can be accomplished with the KASE tool.

Wiederhold, Wegner, and Ceri (Wie92) describe a method for accomplishing

megaprogramming, or very large component based reuse. They present a language which could

be used to describe large component based reuse (Wie92:1), and show an example of this

language in use. They describe megamodules as providers of services, autonomously operated,

which encapsulate data, behavior, and knowledge (Wie92:2). As such, megamodule

implementation and details are unimportant, as long as they can be accessed to provide their

services. This is similar to current usage of such system components as databases, display

toolkits, and operating systems.

In essence, the authors megaprogramming language generalizes the concepts behind these

cüent-provider entities to arbitrary modules performing arbitrary functions. Since data will be

communicated across these various megamodules, the megaprogramming language provides

constructs to facilitate data conversion, or tramduction, which migrates data from a form

acceptable to a source megamodule to a form acceptable to a destination megamodule (Wie92:9).

These megaprogramming notions are a basis for the future reuse of large scale systems

(Wie92:l). They have a direct application to software architectures because they describe

standard methods for creating and using client-provider reusable components. A software design

Page 21

for a system of any size or usefulness will include the use of megamodule-like entities such as

display toolkits and databases.

Stroustrup (Str91) examines the issues involved in creating software libraries in the C++

programming language. Class libraries store reusable code for use by other programs. They are

the most common means of providing design reuse (software architecture) in C++ developments.

Stroustrup, the designer of the C++ language, presents his ideas on the best method for using

C++ to provide code libraries. These ideas include certain design guidance, such as language

constructs to avoid, for writing C++ programs (Str91:370-375).

Stroustrup also describes his views of the software development process and how it relates to

C++. He reiterates that the power of C++ for translating object oriented designs into executable

code does not reduce the need for proper requirements specification or a thorough design process

(Str91:365) According to Stroustrup, many software developments using C++ do not gain any

from the power of the language, because the advanced features like inheritance and dynamic

binding are wasted in confusing, poor, or inefficient designs (Stroustrup,1991:362).

D'Ippolito (DIp89) takes a different approach to the concept of reusable designs in software.

He views the software development process as an instance of traditional engineering, and applies

the concept of models, or abstract behavioral representations, to the software development

problem (DIp89:3). His paper describes the benefits of designing software modules and systems

as models to be instantiated for applications which need them, much as an engineer will select a

power supply for an electronic component from available sources, rather than designing one

himself (DIp89:3).

Page 22

D'Ippolito points out that this model based view encompasses many of our other notions of

how we reuse software, such as parameterized modules, domain specific architectures, code

libraries, and client-provider relationships (DIp89:3-5). These are all activities intended to

capture knowledge in a reusable form and apply it to other problems which can use it. This

process of capturing knowledge, or science, has been perfonned in traditional engineering for

many years. The author proposes we apply traditional engineering principles to our software

components to facilitate their application to other similar problems (DIp89:3).

Harel (Harel92) expands on this concept of models as the basis for software system

development. He describes an approach to modeling systems and their components which he

terms the vanilla approach (Harel92:10). This approach involves abstracting a system or

components function and behavior in a well defined, formal way (Harel, 1992:11). These methods

of abstraction must allow models to be structured and combined to form a system of models

(Harel92:l 1). One interesting feature of his approach is that he concentrates on real-time, or

reactive, systems. Real-time systems comprise some of the most difficult problems to effectively

model in the computer systems domain (Harel92:10).

Once a system of models has been created, Harel points out that we can exploit various

emerging capabilities to explore and improve the resulting system. These include the ability to

execute our system model, or observe its behavior as it passes through states (Harel92:15-16).

This execution can also form the basis for a prototype, or working model of the system

(Harel92:17). The ultimate goal of this model transformation process is the ability to create a

final, finished system from our model automatically, without the requirement for writing code in a

high level language. (Harel92:18)

Page 23

Biggerstaff and Richter (Big89) present some of the problems, challenges, and dilemmas of

software reuse. They stress describe generation technologies, whereby technology is applied to

make software creation automated and repeatable. Generation technologies work because or

recurring patterns, either in code or in rules used to transform software from one form to

another.(Big89:3) Composition technologies encompass a component based approach, where

new systems are made from building blocks. The authors also lump object oriented technology

into the composition style of reuse.(Big89:3);

The authors describe many problems associated with component based reuse in practice.

These include understanding of component, locating the correct component, composing

components, and modifying components. They point out that only with a formal, automated

engineering effort can component based reuse progress and realize large gains. They then discuss

the issues of design reuse, pointing out that, though this technique has much potential, research is

needed to make it usable in practice.(Big89:5-8)

Finally, the authors indicate that general reuse, supported by representation of designs and by

automation, will provide the major gains in the potential for reuse. They indicate that reuse

systems of the future will provide for partial specifications, whereby a design will be represented

in a form that allows for customization, broadening the generality of the design (Big89:12-13)

Curtis (Cur88) presents issues involved in reusing software from the standpoint of designer

understanding, which he terms cognitive issues. He points out that different types of

programmers approach design differently, depending on their experience. (Cur88:1-10) The

different mental processes relate to the amount of pre-concieved design information the designer

can bring to bear on the design problem. More experienced designers will have a more complete

Page 24

view of the system they wish to compose, while inexperienced designers will tend to start with

little or no notions of the design. (Cur88:3-5)

These cognitive issues, the author points out, create the need for a classification system for

reusable artifacts which supports different levels of designer experience. He relates some

classification schemes for reusable software intended to provide varying views of the software to

designers of differing experience. (Cur88:7-8)

2.4 Current Industry Reuse Practice

There are many examples of reuse proliferating in the commercial world. In general, reusable

software can take several different forms, and the amount or reuse can range from code library

level reuse up through entire system reuse. I will provide some examples I have researched and

also seen in personal experience.

In one example, Borland (Boi92) provides an appücation framework designed to speed

development for the Microsoft Windows PC environment. Recall an appücation framework:

some set of code designed to be customized to solve a particular class, or domain, of proble

This framework, called ObjectWindows, contains "object oriented stand-ins" (Bor92:3) for

Windows entities such as drawing windows, scroll bars, icons, etc. When using ObjectWindows,

the developer need not master any of the details of programming the Windows interface, just the

application framework. The result should be drastically reduced development time.

In experimenting with the software, I went from complete Windows and C++ novice to a

finished, high quality graphics application in the course of 4 weeks using this library. I found the

user of the library had to be comfortable with some advanced C-H- programming language

is

lern.

Page 25

features to master the library. Once this was done, the library provided some abstract and

powerful objects to build the Windows application.

In another project, this time from the Ada world, an Ada application framework was build on

top of an X Windows interface for the MSS (Mission Support Segment) project at Peterson AFB.

I was a member of a team which created several layers of the application framework on the MSS

project. This application layered abstractions on top of the windowing environment to allow the

developers to build interfaces from high level, logical pieces. These pieces were sufficiently

general to allow quick development, but were not classical reusable components in the general

sense of the term. They were not reusable outside of the application framework they were built to

support.

Current industry uses several methods to parameterize software. Key information which

customizes a software artifact is called parameters. There are several methods to parameterize

software (Figure 7). I will explore some of these methods, including software coding templates

and table driven software, which are discussed below.

Software coding templates refers to a method of parameterizing that provides software in

uncompiled form to a programmer, along with specific, clear instructions on what to change to

make it work. Using this type of software, a programmer will fill in clearly marked sections of

code and then compile and link an executable system from these software modules. Software

coding templates are often seen in Ada systems, such as the JMASS simulation software.

(JMASS92)

Another method of parameterizing software is to write executable software that expects to

read in information at the start of its execution to configure itself to solve the particular problem.

Page 26

This approach has been called table driven software. The Ada Quality and Style Guide (SPC91)

recommends this approach as an advanced way to build an Ada application.

Software Coding Templates Table Driven Software

Executablle,
but needs

^parameters

Reads

:ills in (Format
Provides

Programmer) ► (Tormab Parameters

Module

Figure 7 - Software Parameterization Methods

At Space Command, software organizations are exploring the use of entire reusable systems

designed for a particular application domain. Using this approach, a system implementor uses a

tool or tools designed to build the system from a set of parameters. In the Space Command case,

the tool allowed a designer to interactively build command center applications using a graphical

interface and underlying software designed to implement the application from the stored

parameters created by the tool.

The commercial world has caught on to reusability with the advent of C-H-. As an example,

books and articles have been appearing which attempt to show novice and non-professional

programmers, as well as professionals, how to harness the power of object oriented programming

Page 27

(OOP). OOP really builds on such concepts as data abstraction and information hiding commonly

found in computer science curricula today.

Lafore (Laf92) shows how to use C++ in a reusable way. He covers the concepts of

inheritance, dynamic binding, overloading, and class hierarchies in his book. These are all

concepts included in C++ to provide the ability to extend and customize existing software. These

capabilities are at the center of OOP's popularity.

Both Ada83 and Ada9X have powerful features to support reuse and customization. Ada

provides its packages and generics as reuse mechanisms. In Ada9X, support for inheritance and

dynamic binding is added to increase the functionality. (DoD92) Many repositories exist for Ada

sofftware, allowing a developer access to a wide body of past work.

2.5 Conclusion

The notion that, as software engineers, we can reuse our prior work has been the basis for

much of our methodologies and research for many years. In the last 5 years, research has begun

to explore how we can build very large systems and networks of systems to exploit reuse. These

methods include megaprogramming, generic or reusable architectures, and model based software

engineering. These activities are all essentially concerned with the same problem - how do

software analysts, designers, and developerr- capture knowledge and create an abstract description

of it? How do they allow software to be used over many related problems, and ease the

construction of software systems which use the knowledge?

Traditional component-based reuse is often inadequate to the task of constructing reusable

systems. In a component based strategy, the designer must design the software architecture the

Page 28

components are to fit into. Though this type of reuse leads to savings and reduced time, a design

expert is still required to complete the finished system.

I have covered several authors' ideas about how to approach architecture-based reuse. There

is no agreement in the field currently on any one approach to this problem. Many of the research

eforts show promising theoretical foundations for improving the future of this area. These efforts

also show examples of successful application of these principles.

I have also taken a look at some industry practice in this area. Reuse is becoming popular and

economical in industry, and it is approached from several different angles by practitioners. Many

of these methods are based on newer object oriented or object based languages and concepts,

such as C++ and Ada. Industry has much to teach the software development community about

creating software, since industry is always seeking to save dollars.

It is this broad spectrum of application for these principles in both research and industry which

makes architecture-based reuse difficult to study and quantify. However, discovering the

principles and techniques behind these methods can lead to many different productivity gains in all

phases of the software development process.

Reusable architectures don't impose a specific methodology or tool on the development

organization using them. Because of this, they can be applied to software development

environments fitting many varying descriptions. They can be applied successfully in environments

ranging from the most rigorous, formal methodologies down to a single developer using a PC in

his spare time. In fact, they have a potential to create significant savings across a broad spectrum

by supporting analysis, design, and implementation reuse.

Page 29

Reusable architectures and their appücation to various domains is an active research area.

These methods are a good step to bringing large scale development under control. An evolving

theoretical basis combined with encouraging results of applying reusable architectures in industry

point the way to a bright future for these methods in the software engineering field

Pagt 30

Ill The ObjectSim Concept

3.1 Overview

This chapter is a report on my first efforts to create a reusable analysis model and software

design for visual simulation applications in the lab, and corresponding implementation in C++.

The initial section is an analysis of the requirements and supporting software process in the

Graphics Lab. Second, I discuss the method we chose to meet our goals in the lab. The result of

the requirements analysis is expressed as a Rumbaugh object model of a rudimentary architecture

for visual simulation. This chapter discusses the process used in the analysis and design stages.

Initial projects which validated the extension through inheritance method of customizing the

architecture are discussed.

3.2 Initial Analysis

The goals of the Graphics Lab visual simulation projects are to support sponsor research

efforts involving Distributed Interactive Simulation (DIS). The lab is sponsored to develop

several visual simulation projects which will interact over network lines with other simulators.

Students develop the simulations either individually or in teams as research efforts. I analyzed the

proces the lab used to reuse work and ensure continuity of these development to determine areas

where software engineering techniques could help.

Reuse has been a goal of this lab for some time. Component based reuse, which emphasizes

stand-alone classes or libraries, was used for many past projects.. However, as I examined the

past prpiects and level of design sharing done for them, I noticed that past work had often been

redone, or that existing components were not suitable due to subtle d(«gn differences. This led

Page 31

to a number of interesting effects, as shown in Table 1. Helping !he development environment

reduce these effects was a central goal of the architecture.

Problem Impact

No one responsible for standard
components

Past reusable software difficult to locate or
classify/verify

No one responsible for improving common
simulation capability or fostering common
design

Lab duplicates effort it could reuse.
Machine power underused. Students
duplicating effort to achieve functionality

Existing components complex to understand High learning curve. Students designing to
lower level of components than necessary

No standard library locations, CASE, or
CM to support large developments
Libraries scattered

Students using word of mouth or global
search to find past work

No design methodology adopted for
projects, other than rapid prototyping /
incremental development approach

No current, usable design representation for
the work. Students reduced to
maintainance of code only

Students don't have time to become well
grounded in C++ or C.

Language features unused, poor code
designs, little reuse or orthogonality in
existing code

Research projects did not have stable
requirements

Students implementing unneeded work,
backtracking and redesigning on the fly

Table 1 - Graphics Lab Development Environment
Problems

I surveyed the existing applications in the lab to attempt to determine both a robust set of

visual simulation requirements and the level of reuse across projects. I discussed the designs of

the Virtual Cockpit (VC) and Synthetic Battle Bridge (SBB) with the thesis students who had

implemented them the year before. I found little commonalty in the implementations and designs

of the systems, but much commonalty in the baseline requirements.

The Virtual Cockpit implements a simulation allowing the participant to fly through a visual

scene in a simulated cockpit. The basic requirements include the ability to have a view attached to

Page 32

the cockpit, the ability to read tracking input and 'look around* at the scene, and the ability to

receive and display participants from the network. For the last thesis cycle, all of the work done

to look 'out the window' was done for the Virtual Cockpit project and was not reused. The

network interface was developed for both the VC and SBB, but ended up being two versions

because of different interface requirements. A central goal of any reusable architecture for the

lab was the ability to support the Virtual Cockpit project.

The Synthetic Battle Bridge implemented a simulation allowing the participant to utiüze

different displays and interface devices to tt ter and move around an ongoing network simulation.

The previous thesis work was done using GDMS. Since this effort and the VC were developed

under different advisors by different students, there was no effort to create a common core for the

two simulations except the network interface work.

After studying the VC and SBB, I surveyed the projected applications in the lab to determine if

they would add requirements or constraints to the basic architecture. I discussed the Red Flag

Remote Debriefing Tool (RDT) project, being developed to show ongoing and stored Red Flag

exercises, with the responsible student. I also discussed a simulation requiring a space view,

including satellites. From these discussions and time spent in the lab, I developed a set of high

level basis requirements for the architecture. These are shown in Table 2 and Figure 8.

3.3 Iris Performer Overview

The first existing work I surveyed for this proje-ct was SGfs Performer. Our lab had an early

version of this visual simulation library. Later, through contacts with SGI, we received a later

release and a Programmer's Manual for the library. This overview of Performer is based on that

Page 33

manual and my initial experiments with samp'e programs..

Project

All

All

All

VC/SBS

All

VC

All

All
Ail

Requirement

Move viewpoint around simulation

Allow view direction to be based on device input

Varying window sizes

Drive head mounted display and use head tracking

Display ongoing network traffic

Send network information

Display configurable terrain

Display text and icons on screen window and in scene

Display correct world state (destruction, damage, time of day)

Table 2 - Basis Requirements for Graphics Lab Simulations

Input devices
- HOTAS
- Dataglove
- Keyboard
- Spaceball

/QB\

f
ld:A10
Pos : 123,123,123 Displays drawn

in scene
Overlay style
display element

Dead reckoning player

Seneors, Radars,
Imagery

View can be -
/ - Attached to a model

p. - Tied to own motion code
Changed by HMD

Player with
motion model

Multiple views into same scene
Multiple viewports and Windows

DIS event driven player

Smart Terrain Tile

Figure 8 - High Level Graphics Lab Requirements

Page 34

Performer is a library of C callable routines that provide a new interface to the SGI graphics

pipeline. This interface improves vastly on the Gh interface in many areas. This library abstracts

many of the chores associated with programming the SGI, and captures much of the SGI

expertise about programming their pipeline. In addition. Performer provides an easy upgrade to

the RealityEngine platform from the VGXT, because the library hides much of the details of

rendering geometry and the same Performer interface is used on the new machines. (SG92)

Performer maintains an internal geometry tree. This tree holds many of the common types of

geometry used on the SGI. Geometry nodes, or geodes, can hold polygons, triangle mesh, light

points, and many other types of primitives These geodes are the leaves in the geometry tree.

The tree also hold information like level of detail switching nodes, animation nodes, coordinate

systems, group nodes, and instance nodes (SG92:Ch9).

Since the geometry tree is not dependent on a particular external geometry format, any format

which can be converted to the Performer internal geometry format can be used on the tree. This

conversion is done through file reader routines (figure 9). Performer comes with a Multigen flight

format reader, a reader for '.sgi' format geometry, and a reader for '.bin' format geometry. The

flight reader allows all of the power and hierarchy expression available with Multigen to be

seamlessly used in Performer applications with minimal effort. (SG92:Ch2)

Performer also maintains state information in the tree. These nodes called geostates hold

information like materials, textures, transparency, lighting conditions, and other information

normally part of the GL state. This allows Performer to easily handle multiple textures,

transparency, etc, through its built in state management features.

Page 35

Performer renders its geometry tree very efficiently. Some early test results showed very

promising frame rates for our simulation prototypes. This indicated the limiting factors for

efficiently rendering a set of geometry are dependent on geometry and scene management, not on

rendering code efficiency, when Performer is used.

The other performance improvement with the Performer library is obtained through its

multiprocess management features. Performer provides an abstract model for using multiple

processors on a multiprocessor machine. This model dedicates one processor to drawing and

culling per rendering pipe, and one to the application managing the scene. A straightforward callback

model allows custom draw and cull processing for the simulation, such as is used for drawing

display text, reading the keyboard, and similar tasks which need to be connected to the GL

process. This is explained later in the section on architecture.

.fit
reader

fit .fit

sgi
reader

* ̂ Sk

sgi sgi
a

■pfiSSS) lnternal

Geometry Tree

Figure 9 - Format Independent Performer Operation

Other features in Performer include multiple channels (viewports) into a scene, an easy to use

viewing model based on Euler angles, and an extensive math library. Performer has built in

collision detection features, intersection testing, and special effects processing (clouds, bm j

Page 36

of day, earth-sky, etc). The version 1 release also contains a reader for Multigen Flight format

which allows use with Multigen easily.

3.4 Object Manager

The Object Manager is an existing library which implements a network interface. As discussed

in Chapter 1, a network interface manages the sending and receiving of network PDUs, enabling

simulators to communicate. Figure 10 shows a high level view of a network interface's

requirements.

Monitor time/position pnus
to send PDUs only
when necessary

DIS Coordinates
Receive PDUs

Convert xyz, hpr to
earth centered coordinates

Sending player/event

Dead Reckon for smooth
movement

Convert to local
rendering coordinates

^Represent player/event
appearance

Figure 10 - Network Interface Requirements

The Object Manager handles the functions of position/time monitoring, dead reckoning, and

sending and receiving the PDUs over the network through interfacing to a low-level network

driver called a network daemon. In seeking to reuse the Object Manager, the developers were

looking for ways to efficiently manage the processing shown in the diagram above. This

Page 37

processing can be particularly expensive for large numbers of entities being received and

dead-reckoned. Table 3 shows a breakdown of the specific tasks required for the network

interface.

DIS Simulation Requirement Related Software Responsibility

Simulators need to show accurate state of
external entities (type, position,
orientation, damage, flaming)

Software needs functions to position network
entities and reflect their state graphically and
within any other required data or display
structures. Software will map simulated entities
onto correct graphical representation

Send simulators can cause events, which
can affect other entities in the simulation

Software must be able to generate internal
simulation events, broadcast them, and process
them against the entities from the network to
inform those simulators if they are affected

Simulators will process events in the
simulated world, such as explosions and
weapons fire

Software will allow events to be graphically
shown from internal sources or over the network

Send simulators will change their state
based on external or internal events and
based on the simulations progress

Software will process both external and internal
events against sending simulator(s) and
broadcast and graphically show correct state

Send simulators will reduce traffic by
limiting updates based on time or position

Software will not update state until some time or
position threshhold is exceeded

Receive simulators will show a smooth
entity progression through scene

Software will dead-reckon simulation entities
between updates

Table 3 - Software Requirements for Network Interface

The Object Manager as implemented used a 'snapshot' interfacing method to communicate the

received entity status to the application every frame. This means all entity data is copied into data

structures for the requesting appücation. The application has responsibility to perform any

coordinate transforms required, show the correct entity representation, and update the

representation's position and orientation to show accurate movement.

Page 38

3.5 Other Existing Work

Developers identified other existing libraries available for use in the Graphics Lab. These

included device interface classes from previous years thesis work, some drawing classes for

instruments and stroke text from Wright Labs, and a public domain user interface package with an

interactive tool for constructing interfaces. For each reusable library, we either incorporated the

library or devised a strategy of interfacing the common simulation design to the library.

3.6 Reusable Applications

After surveying the requirements in the Graphics Lab, I created a meta model or reusable

design to base the simulation work on. Meta models and related notions of software architectures

are referred to often in current literature. Lowry (Lowry91) describes both application

generators and software architectures as software engineering techniques which abstract and

reuse design knowledge and drastically shorten the time required to develop applications

(Lowry91:641) Application generators are tools which allow a developer to supply the

parameters to a reusable piece of code or application. The tool then generates a system fitting the

parameters required. Generally these are useful in a narrow domain Software architectures take

this approach one step higher. They seek to reuse designs across domains which share some

commonalty. (Lowry91:648) The result in a system which is more general, but more difficult to

customize, often required knowledge based techniques. (Lowry91:649)

In the C++ world, these same ideas are the basis for the notions of application frameworks,

also called application templates. Often, these take the form of class libraries. Application

frameworks differ from class libraries in that they support reuse at a much higher level than

traditional component based software development. The reusable components in an application

Page 39

framework are specifically designed to provide a high level of services within an application using

the framework. Outside of the framework, the reusable pieces may not provide any functionality,

but within the framework, they can provide major savings.

3.7 Test Architecture

In the Graphics Lab at AFIT, I viewed an application framework as a good first step in solving

the development problems encountered above. An application framework with suitable

documentation would allow student developers to concentrate on the research parts of their

simulation, while not redesigning the basic simulation repeatedly. The framework could provide a

ready repository for storing reusable forms of solutions to problems developed by students. I will

show more examples of this technique later.

After I decided on the application framework strategy, I began to incorporate previous reuse

work into the architecture, beginning with Performer. As I progressed, I also incorporated other

work in the form of device interfaces, network interfaces, and reusable classes developed by

current students to fit into the architecture.

I designed the initial meta model to be C++ classes providing a high level stand-in for

capabilities provided by the Performer library. This approach is similar to the ObjectWindows

strategy discussed above. The initial Rumbaugh class diagram we designed to is at Figure 11.

The simulation class is written for each application using this architecture. Each simulation class

must have the same signature and perform specified jobs at each of its entry points (methods) to

work with the architecture. When it is developed to meet these requirements, the developer can

use the Renderer and Model classes' services to offload much of its detailed functionality, and

concentrate on the functionahty that makes his simulation unique .

Page 40

Using this simple model as the guide for my efforts, I implemented the framework classes

Model and Renderer. These provide an interface to functionality found in the Performer library.

Once these were complete, I built two simulation apphcations to plug in to the framework, a

geometry viewer and a fly-through simulator. Each application reused the Model and Renderer

classes.

Model
m Coordnate

System
f

ReadModel
Simulation Renderer

View: Coordinate
System

Shared_data
Renders on

Scene

Initialize
Render
InsertModel Draw

Cull
Init
Propagate

Figure 11 - Initial Reusable Simulation Model

In this much simplified model, a visual simulation consists of a renderer, an application which

uses the renderer, and some collection of dynamic models manipulated by the application and

rendered by the renderer. Every application has a view (in the basic case), which is updated by

itself and is the view for the renderer. The application contains the callbacks tor drawing and

culling, to be called by the renderer. This structure allows the propagate, cull, and draw members

to be called from different processes, which follows the Performer multiprocess technique.

Finally, the application must maintain a special memory area for shared data between its draw.

Page 41

cull, and propagate members to accommodate multiprocessing. This area is allocated in the

shared data area by the renderer if the renderer wishes to do multiprocessing.

It is important to note that only the application class needs to be written to reuse this

architecture. The renderer and model class provide abstract services to application classes which

are plugged in to this architecture. The application class provides entry points which the renderer

calls in the form of C-H- virtual functions, which allows any application subclass providing

implementations for the virtual functions to function with the renderer. Two examples of

simulations written using this architecture are given below.

3.8 Viewer Instantiation

The viewer provided a basic application to "shake out" the architecture and work with

Performer. I started with an example program to implement a simple fly through of a scene

represented as one flight format model. I first designed the architecture as shown above. Then I

added functionahty to improve the fly through, allow manipulation of the model, ami display some

data to the user as he used the program.

I used the viewer to explore the multiprocessing features of Performer. Since Performer

provides a standard 3 process model for the simulation, I wanted the early design to be able to

take advantage of this feature. Having access to the multiprocessor features was an important

performance criterium for the architecture. Figure 12 illustrates the distribution of tasks to the

application, draw, and cull processes and what the application class needs to do to accommodate

this.

Page 42

Application Class

^Propagate - App process ^
-Read mouse, update postn
-Modify view

V^-Manipulate model j

•—i >
Draw - Draw Process
- Read kbd, store values
- Draw values on screen

r Cull - Cull Process
- Unused in this application

All values needed
by another thread
in Shared area

Shared data area

- Kbd values
needed by
Propagate

- Model and view
information
needed for draw

to display

Renderer class manages
calls to each callback from
the proper process thread.

Figure 12 - Viewer Multiprocessing

I was able to complete the viewer to work using the three processor, fully parallel mode in

Performer. It reads in one command line argument, assumed to be a legal flight format file, and

sets up a suitable view based on the model's size. It allows fly through and orientation

manipulation of the scene, with some rudimentary statistics displayed to the user.

3.9 Flyer Instantiation

The second application I built to use the architecture was conceived as a platform to help the

Graphics Lab develop displays and instruments for the Virtual Cockpit. It is a simple fly through

application which allows the user to specify a flight file for terrain and another to fly through the

terrain with. The user then flies through the terrain "in" the specified model. I built this

application as a lead in to converting the Virtual Cockpit to a Performer application.

Page 43

This application has become the standard test application for the ObjectSim architecture. This

means that, as new capability is written for the architecture, it is first implemented, debugged,

and tested with this application before being used on other Graphics Lab projects.

3.10 Conclusions

After implementing two very different simulations using extension through inheritance, I felt

the idea had enough promise to become the main vehicle for the remainder of this research. I

revisited the analysis work to construct a full scale model of the reusable simulation.

For this next step, I gave the system a name - the ObjectSim application framework for visual

simulation development on SGI machines. ObjectSim was developed using a development model

I will call the necessity model. In this model, successive applications are developed or converted

to use the common architecture. As each is converted, worthwhile pieces of functionahty are

incorporated into the application framework, based on an overall design for the framework. In

this way, during the conversion process, I incorporated previous solutions to particular problems

and made them available to every simulation using the framework.

The requirements for ObjectSim were to support a large class of simulation applications in the

Graphics Lab. These applications have requirements to communicate with and receive DIS

simulation messages, drive head-mounted displays, provide flexible views into the simulation

scene, and allow simulation through large geographical databases. In Chapter 4,1 will present the

model and class designs which combine to form a reusable visual simulation capable of satisfying

these requirements..

Page 44

IV ObjectSim Design

4.1 Design Process

The design process used for this framework was based on the analysis process described in the last

chapter. Once I had the basic requirements listed and understood, I took the small framework I

had created for the viewer and the flyer and added the other classes needed to support the thesis

projects in the lab. Following the high level requirements I had identified for the Graphics Lab

simulations, I came up with another high level diagram, which shows th asic classes and division

of responsibility for ObjectSim. This diagram is at Figure 13. This scheme for requirements

separation in the architecture guided the design of classes, member data, and member functions.

Simulation Class
Superclass for application

- Viewpoint user interface
- Executive simulation control

Pfmr_Renderer Class
- Executive control
- Common geometry list
- Graphics/Window management
- Multiprocess management

/ S r
View C« d
- Viewpoint calculations
- Multiple WindowA/iewpoint
channel management

\ r

Changes
Terrain Class
- Sun, time of day mgmt
- Sky and ground
- Features in world
- Placement of world on globe

Modifier Class
- Ten-plate for certain

devrce interfaces
- Trackers / Spaceball

r^LL_

Player
- Superclass for sim entities
- Inherited classes create

useful subclasses, like
- Network Player

- Stealth View Player

represents
Flt_Model Class
- Geometry representation
for Players

- Manages instances of
geometry

Figure 13 - ObjectSim Requirements Separation

Page 45

The second step m the design pr-^e ,i involved creat'ng C++ class descripiions for the basic

classes. These descriptions contained methods to implement the functionahty needed by each

class and also the control points needed to make each class work in the multiprocess model.

The design process for ObjectSim was very much incremental and intertwined with the early

implementations using the library. Overall, I would characterize the development as a rapid

prototyping type of spiral model. Typically, I would concentrate my efforts on exploring high risk

areas, followed by a sample implementation, usually in my Flyer test program. Once the piece of

the library worked as I expected, I would aid the developers using the library in adding the

capability into their simulation.

4.2 ObjectSim Documentation

The documentation for the classes appears in three forms. In this chapter, I document the main

classes with Rumbaugh Object Models and Rumbaugh State Diagrams. The ObjectSim

Application Developers Manual (Appendix A), contains a class reference which documents most

classes contained in ObjectSim, along with a tutorial designed to aid a developer using the library.

It is the developer's manual which is intended to be maintained as the reference to the library. The

final design is found in the class header files These files contain the latest design of the

library.

4.3 Class Simulation

This class is the superclass for all ObjectSim simulations. It was designed to provide the entry

points needed to assign processing to different threads or times. In this way, the programmer can

use a simulation class to provide an object oriented executive for the simulation. The calls into

Page 46

this class simply tell the simulation that the graphics portion of the program is ready for the

simulation to compute another frame step of simulation 'movement' or propagation, or to draw or

poll devices on different threads.

Simulation

init_sim() = 0
ailoc_shared{)
propagateQ = 0
pre_draw()
post_draw()

!

start

alloc_shared
(shared allocation,
construct objects)

A Renderer ready
for geometry

VC_App

own data

lnit_sim()
propagateQ
pre_draw()
own_method()

etc

SBB_App

own data
init_sim()
propagateQ
post_draw()
alloc_sharedQ
own_methodQ

etc

init draw c
^ ^ init sim
(Add initial
geometry, renderer
initialize enters
players . loop

Renderer
new frame

a
Renderer
draw calls c

propagate
(Move players,
accept sim
controls

Figure 14 - Simulation Class Diagrams

Figure 14 shows a diagram of the simulation class, along with an example of the way

subclasses must override certain operations and can override others, if needed. The state diagram

shows the various states the simulation can be in, with the transitions equating to calls on the

objects entry points.

Each simulation should contain a constructor which consists of calls to initialize the various

ObjectSim objects. The constructor performs the functions described in the alloc_shared state

above. After constructing objects, the simulation enters init_sim state as described above, which

Page 47

performs any geometry building needed for the simulation. The propagate state, encompassing all

calls to the simulation, is a continuous loop at the frame speed of the machine. To effect a 'real

time' simulation, a time call can be used to key simulation or player processing to time passage.

4.4 Class View

This class encapsulates a single view into the simulation. A view has a channel where it is

rendered, and takes its viewpoint from the player it is attached to. Calculation of the viewpoint is

discussed below. The view class holds the reference to the channel's scene and the Performer

matrices used to translate the scene graph to move the terrain and players' geometry relative to its

viewpoint. A simulation can maintain multiple views, which allows multiple channel simulations.

Views take their viewpoint from a player. A player is some entity in the simulation. From the

view's perspective, the only important feature of the player is that it has a location, an orientation,

and may have geometry associated with it. When a view is attached to a player, the view always

takes that player's position and orientation. If the player does have geometry associated with it,

the architecture takes the additional step of performing 'jitter' removal. The problem we noticed

was when rendering geometry close to the viewpoint the geometry would jump from frame to

frame, causing a jittery effect. This intensified as the viewpoint moved away from the origin.

Setting the viewpoint to 0,0,0 didn't resolve the problem, so we traced it to floating point error in

the geometry pipeline caused by the geometry being translated from its actual position to the

position around the viewer at the origin. The solution was not to draw the geometry and translate

it, but to substitute a copy of the geometry actually drawn at the origin. Therefore, a viewpoint

inside geometry actually is set at the viewpoint offset rotated by the player's heading, pitch, and

roll vectors. The 'zeroed' geometry is rotated and drawn, and the player's xyz location is used to

Page 48

scroll the world by (Figure 15).

Player with geometry
at x,y,z, with h.p.r ^^<l

Attachment point for view A?

Geometry Origin
.0,0,0 in rendered scene

Substitute Geometry and
Attachment Point
rotated by h^.r of player

Geometry - Translated by
-x. -y, -z

Terrain - Translated by -x. -y, -z

Stealth Player \
(No Geometry)

View Direction is always
h,p,r of player + fixed rotations
within player + any modifier rotations

Figure 15 - View Computation and Jitter Removai

The viewing calculation was designed to allow for two other factors required in a simulation,

positioning within the player and modification based on device input. The location of the view

within the player is accomplished by a rotation and location vector expressed in the local

coordinate system of the player. For instance, a location for a flight simulation might indicate the

head position of the pilot, while the rotation might indicate the default gazing direction for the

pilot. Figure 16 shows the View class design.

4.5 Class Player

This class is used for entities and stealth views in the simulation. Generally, a simulation will

consist of one or more player which implement stealth or active viewpoints and/or other active

entities in the simulation. For active entities, the player can be used to encapsulate the functions

Page 49

of modeling behavior, updating geometry, any drawing associated with the player, and handüng

any input required. For stealth views, the player's can handle moving the view, drawing, and

input. For remote DIS entities, the player can serve as a capability designed to accurately reflect

the position and appearance of the remote entity.

View
pfChannel* chan
Modifier* Delta

new_yiew()
setview()
init_draw()
pre_draw()
draw()
attach_to_player(attachable_

player*)

Attachable_Player* get_attached()

I start

alloc_shared
(shared allocation,
r
Ush

z Simulation ready
for views

new_view

initialize
get channel

n
(First view
on pipe)
OpenPipe

VC View

init_draw()
pre_draw()

init_draw

Open a
graphics
window

SBB View

drawQ
setview()

draw
callsj
do drawing
function

setviewj
compute
viewpoint

attach_to_
playerjreplace
geometry

Figure 16 - View Class Diagram

Players are the way the simulation accomplishes its purpose. Any entity being modeled can be

thought of as a player in the simulation. The simulation presents its geometric display via

attaching the views to players. Other players in the simulation may appear in the view, if they

Page 50

maintain a geometric representation and are in the right location to be seen by the player currently

attached to the view. Figure 17 shows documentation for the player class.

Player

pfCoord* Coords
Frt_Modei Model
Pfmr_Renderer*

Renderer

init() = 0
propagate() = 0
look_at_j)oint

(pfVec3 where)
move_along_
heading(iloat howfar)

I

1 simulation initializating

init
Build geometry
set position
one time i
initialization

done

Attachable_Player

pfVec3 base_offst
pfVec3 base_rot

draw()

-*±±

Stealth Player
Own Members
init()
propagate()
Own Members

i
active
perform function
move
update geometric or

other representation

^7
draw

Active Player
Own Members
init()
propagate()
Own Members

Figure 17 - Player and Attachable Player Diagrams

4.6 Class FU Model

This dass was designed as a way to allow simulations to handle their geometric representations

in an abstract manner. The process of reading a representation from a file involves a utility called

a loader' which translates the geometry into a format suitable for rendering. In the case of

Page 51

ObjectSim/Performer, the lotder translates the geometry into the Performer tree format. This

class provides methods fo" abstracting this loading process.

In a large simulation, thousands of entities may be in the rendering tree at one time. Many of

these will have common geometric representations (a battalion of tanks, for instance). Since these

models take memory, applications seek to load only one copy of each unique geometry. This is

accomphshed through instancing. This class also maintains a data structure for instancing the

models. Each model is identified by an integer index, which becomes its unique identifier. Any

other load requests using that index will be given a handle to the already loaded model. This

presumes, of course, that the applications utilize this class to load the geometry.

This class is a natural repository for methods which operate during the loading process to

perform some specialized action. This might include: building a complex model from several files,

reorienting models described in a non-compatible coordinate system, or handling requirements for

articulated parts, etc. Figure 18 presents the design for the Flt_Model class.

Fit Model

pfDCS* RotDCS
pfGroup* root

readmodeKiocation,
index)

readlodmodel(..)
OrientDISModeK)

connect
to tree

F'jre 18 - Flt_Model Class Diagram

A Flt_Model is used to put representations into the Performer tree. It must be connected to

the tree and the RotDCS must be connected to the root in order for the geometry to be seen. In

Page 52

this sense, the Flt_Model serves as a data structure for holding the needed hooks tor a correct

representation in the scene graph.

4.7 Class Pfmr_Renderer

This class encapsulates the simulation main loop and collection of views. It provides member

functions to initialize the simulation's rendering, obtain graphics resources to open windows on,

and to perform the simulation's inner loop. The inner loop manages the Performer three process

model, issuing calls to the Simulation and views on the main application, cull, and draw threads, if

they exist. The Pfmr_Renderer class is designed to hide the C callback nature of the Performer

interface, instead issuing calls to the ObjectSim objects to provide processing on the various

threads and preserving the object oriented simulation design. The Pfmr_Renderer class also holds

the common part of the Performer scene graph used to share the player geometry across views.

Figure 19 shows a design for the Pfmr_Renderer class.

Pfmr Renderer

pfGroup* players

init(Simulation,
numpipes,,
Terrain)

render()
arbitrate(View)
setdrawmode(Mode)
insertmodel(Model)
getscenebounds(..)

initializing
Kick off threads
initialize rendering
tree

! initj init sim

Q Building
resources

^arbitrate | assign
1_J channel

r^
setdrawmode^-s.

propagate sim
set views
call draw/cull
threads

Figure 19 - Pfmr_Renderer Class Diagram

Page 53

4.8 Class Terrain

The Terrain class was designed to encapsulate the environment of the simulation. This

includes the ground (terrain database), the sky, the time of day, the weather, and other

environmental variables. The terrain would thus become the simulated world where the players

and interact. This class is responsible for both the simulated view of the environment and

proper rendering of it in the graphical scene.

A terrain database can be generated many ways. Perhaps the simplest is to read in a model

representing the terrain, similar to the way player representations are read in using the flight

model class. Other ways exist to build terrain. These include building terrain representations

using elevation data and cultural feature data, and generating dynamic terrain which is 'smart'

enough to only render terrain near the viewpoint in high detail. The terrain class is designed to

provide the environment and terrain database to the simulation independent of the way it was

generated (by using subclasses for the various representations).

The Simple_Terrain class was the fust terrain subclass developed for ObjectSim. It contains a

sample implementation for the case when the terrain is just a simple model. Terrain implemented

this way can be as simple as a single textured polygon or as complex as a multi-layered database

including many detail levels embedded in the single file.

No matter how the terrain is implemented, ObjectSim requires that it be able to be translated to

effect the proper viewpoint placement in the simulation. For the single model terrain, the terrain

is translated just like any other dynamic object in the simulation. For terrain implemented in

different ways, the terrain could be translated via pushing a matrix before drawing, or by attaching

the terrain to a DCS node and then to the Performer tree, if this is possible.

Page 54

The terrain class also contains the Round_Earth_Utils object for each application. This is an

object which is configured when the terrain is built to provide flat to earth-centered coordinate

transformations to the applications. This object is contained in the terrain class because the center

of the terrain patch being used defines the correct transformation. The Simple_Terrain class has

the Build_Terrain methods to read in terrain defined different ways. The Terrain class design is at

figure 20 .

Terrain

Round_Earth_Utilities*
REU

configure_channel
(chan) = 0

clamp(Coords) = 0
init_drawO = 0
draw() = 0

TI

build/read
terrain

Fit Model

pfDCS* RotDCS
pfGroup* root

Simple_Terrain

pfESky* ESky

build_terrain(location)
buildjerrainflocation,

translation
set_sun(coior, location)

Figure 20 - Terrain Class Design

inrt draw

draw

configure
channel

4.9 Class Modifier

Modifier is a superclass for a standard type of device interface in ObjectSim. A visual

simulation often requires device inputs in the form of coordinates, both position and orientation.

This type of input is used for spaceballs, head trackers, joysticks, and other devices. It can be

Page 55

used to change the viewpoint or move it, and also for other uses in the simulation. Modifiers

abstract this type of device input, making possible interchangeable devices in a simulation. The

view class includes a pointer to an abstract modifier, which is apphed to the viewing calculation

before the scene is rendered.

Modifier
pfCoord* State

init() = 0
poliQ = 0
reset()
init_state()

X

initializing
set and calibrate
device

arrange queue
Jnputs

Head Tracker
init()
poll()

I
Spaceball
init()
pollO

NQ Modifier
init_extern_read = 0

(qing function)
handle_event = 0
(event)

x

active
maintain state

reset
(if task)))

(not task)
read device

Forms
Mod

Keypad
Mod

Figure 21 - Modifier and Subciasses Diagram

Each modifier is required to maintain a state, which is its current coordinate values. These

values represent the value of the device inputs. These values can be read during a call to poll the

device, or maintained in a local variable which is copied during polling into the visible data

structure. In this way, the Jevice input can be set up to work as an autonomous task.

Modifiers were designed to allow substitute capabilities for inputs which are difficult to set up

in a development environment. For instance, a keyboard can provide the same state information

as a head tracker, but the keyboard is much easier to use while a simulation is being developed.

Page 56

For Objects im, a subclass of modifiers was developed for use with applications which maintain

a queue of user inputs. The NQ_Modifier class gives a specification for a modifier which can

work from input on a device event queue. Modifiers like this do not directly access the queue,

but have a method which can test a particular queue input for applicability to that particular

device. Figure 21 shows the modifier class design.

4.10 Initial DIS Interface

To interface to the Object Manager (Chapter 3), the Graphics Lab students developed a

strategy in which each application had a network interface which returned a view of the world

customized for that application. The Object Manager contained a short method for each

application which returned the state of each entity every frame. The remote network entities in

each application are called network players. Each application also maintains a class to manage the

list of network players, called the network manager. The network manager interacts with the

Object Manager via the method call for that application, bringing in the list of players for that

application each frame.

Each network player is inherited from a common network player, the Base_Net_Player. The

Base_Net_Player was designed to provide a basic network entity data structure. ObjectSim

contains the Sim_Entity_Mgr class, which operates on Base_Net_Players and performs standard

functions like appearance management on them. The Sim_Entity_Mgr class is also designed to

manage appearance and network event handling for local non-network entities, such as terrain

static features or local sending simulators. Because of this, the Sim_Entity_Mgr class also

manages incoming network events ibr the application.

Page 57

The Model_Mgr class was developed by one of the students this year. I incorporated it into

the architecture as a method for managing the large model space found in a DIS application. Any

of hundreds of different entity types can appear over the net. The Model_Mgr provides a way to

list models by enumeration values in a separate file. This allows the DIS application to obtain the

correct model for the enumeration value of the incoming entity and display it.

The Animation_Effect_Player was developed to show network events. It provides a

class-based method for building and displaying an animation to model a weapons effect in a DIS

simulation. Animations can be mapped to different weapons types or detonations, allowing a

simulation to show a more realistic world view to the user.

The network interface subsystem developed for ObjectSim in shown in Figure 22. It shows a

class model of the different parts of the interface and their relationships. Each application

developed using ObjectSim uses a network interface like this to get its view of the world. The

Object Manager is responsible for passing a dead-reckoned list of entities back to the application

every frame in earth-centered coordinates, which each apphcation has to convert into rendering

coordinates. Also, entity statuses are passed whether they changed or not. In preserving the

Object Manager as an abstract entity manager, this interface introduces inefficiencies into the

process of receiving players described in Chapter 3. This led to an improved network interface

design for ObjectSim.

4.11 Improved DIS Interface

The goals of the improved DIS interface are to maximize throughput of players from the

network. I analyzed each portion of the pipeline players go through in coming off of the network.

Page 58

being dead-reckoned, undergoing coordinate conversions, and being represented in the scene.

The results of this analysis are fully discussed in Chapter 6, but the improved design is here.

The major inefficiency in the network interface was the dead-reckoning of entities in

earth-centered coordinates. This forced each application to convert each entity's coordinates into

rendering coordinates each frame. Since a conversion involves 64 floating point multiplications,

this became a major bottleneck each frame when the number of entities exceeded 100 or so.

Model_Manager
Maintains model
to entity mapping

Player

Send_Objecl
Manager

Sends Data to Net

1

^

Base_Net_Player

Standard Fields
Required Interface

uses

1 •-•„II-.
Receive_Object_
Manager

Gets Data From
Net

n n

\jaiia U A
affects

\ 'our_Send_Net_Player
fivjves in simulation

Sends state

Your_Receive_Net_Player
Receives State
Has specific sim data

i\ J
causes

calls

Animation_Effect_
Player *r * Net_Manager

Maintains list
of Net Players

Gets update of net

Event shows w
'-• Detonation or

Sim_Entity_Mgr
Accepts Net Events
Notifies Sim Entities

if affected
Maintains Current

Sim Player List

—4
Gets^-

Emanation
.i

calls

Your Application
Calls Players. Net
Manager, and Sim
Entity_Mgr

V *

D = custom

S
\

>-

IIICU M ■AJ

Figure 22 - Initial Network Interface Subsystem

Page 59

In order to solve this, I designed a network interface which only communicates entity status

when a new PDU is received for an entity. Then, I created a new class,

Base_Net_Remote_Player, which has dead-reckoning (in rendering coordinates) built in. I

designed the new player to allow the offending coordinate conversions to be performed on

another thread, only when necessary due to a new PDU. I also built a new standard network

manager class designed to work with the network players. This worked substantially better (see

Chapter 6), and the network interface performance was improved.

The other problem was the design of the old network interface was not extensible. It was

structured and not object oriented. The network managers and Sim_Entity_Mgr performed all of

the processing for each player, rather than allowing the player to perform its own processing. In

effect, the network players' methods were never called, so the network player was nothing more

than a structure. The improved design has methods for the Base_Net_Player and the

Base_Net_Remote_Player wh;' ..perform the appearance management, dead-reckoning, and

frame critical process reduction inside of the player, rather than having other classes responsible

for these functions. This new design is more reusable and extensible, but further work can

improve it more (Chapter 7). Figure 23 shows a design for the improved DIS interface.

Page 60

Base_ Net„Player
Appearance mgmt
Standard DIS Status Data
Periodic propagation

Propagates

./*■».

Sim_Entity_Controlier

Maintains active list
Propagates players each
frame and periodically

Your_Send
Player

Base_Net_Re mote_Player
Dead-Reckoning
Round_Earth_Coriversions
Insertion and Deletion
Extended DIS Status Data
Task callable method for

conversions

I Proce Processes

Reads Event

I Reads

Object_Manager
Buffer_read and store
Data copy for new PDU data

Maintains Uses

Basic_Net_Manager

Updates from Object_Manager
Spawns Conversion Task

Figurd 23 - Improved Network Interface

4.12 Overall Design

Simulations designed using ObjectSim all share the design information just presented. The

high level model for all ObjectSim simulations is identical. Each simulation consists of a

Pfmr_Renderer, a Terrain, at least one View, and at least one Attachable_Player. The simulation

can also have one or more Modifiers. Players can have representations in the rendered scene

(Flt_Models). If a simulation is a DIS compatible simulation, it will have a network manager and

Page 61

a collection of network players it maintains. Figure 24 is a high-level diagram showing this

composition.

1 i
r

Terrain
L

Pfmr_Renclerer

Simulation

x\
Renders
On

\ y

1*. View
^ i— 1^ On

" jAttachf
'' 1 i _ Flt_Modei

. ._ fy Player

Modifier 1 +
riepresen isl

Figure 24 - High Levei ObjectSim Composition

The next chapter discusses the process of creating instances of this model. These instances

include four major thesis projects and some example and test projects. I will discuss how the

model fared in use on these various projects, and show how the simulation designs are inherited

from the design given above.

Page 62

V ObjectSim Applications

5.1 Introduction

This section documents the process of aiding developers in using ObjectSim to create their

simulations. Several student projects used the reusable design and created some quite successful

research efforts using this approach.

Each research project was performed by one or more Masters Degree students, largely during

a single year. This means each student had a limited amount of time to actually make a research

contribution and produce or enhance a simulation. As the research goals for Graphics Lab

simulations grew over several years, students faced a difficult task in developing capability to

produce, work which met sponsor research goals. The architecture developed in this research

project attempted to provide the advantage of a proven design and components to these students.

The various projects implemented using the architecture are listed in Table 4.

Project

Virtual Cockpit

Synthetic Battle Bridge

Description - Research Goals

Immersive Flight Simulator
- Research inexpensive alternative to domed simulator
- Build man-in-the-loop DIS platform
- Study modeling of advanced weapons system

Satellite Modeller

Red Flag Display Tool

Immersive/Console based Commanders Eye view of battlefield
- Research immersive interface techniques for Commander
- Study expert computer situational analysis
- Study situational representation techniques for battlefield
- Study user interface techniques for effective user view control

Immersive/console simulation for analysis of satellites
- Represent single orbits or constellations
- Study immersive interface into satellite simulation
- Interface satellite data onto DIS simulations

Console based debriefing/display tool for Air Force exercises
- Study user interface for debriefing system
- Interface live or recorded exercise data onto DIS

Table 4 - ObjectSim Projects in Graphics Lab

Page 63

I will present the most basic ObjectSim simulation, implementing a fixed viewpoint over some

terrain. Then I will present the instantiations for the Virtual Cockpit and the Satellite Modeller. I

will also show a simplified object diagram for each, and discuss the level of reuse achieved and

the corresponding student effectiveness.

5.2 Basic ObjectSim Simulation

This section will introduce the most basic ObjectSim simulation. This simulation will place the

viewer in an upright position viewing a patch of terrain. The objective is to show how the

combination of inheritance and the application framework provide functionality to the developer

easily. The first block of C++ code shows the parts of ObjectSim we are using.

// Performer includes
#include <pf.h>

// ObjectSim classes
#include "pfmr_renderer.h"
#include "attachable_player.h"
#include "view.h"
#include "simple_terrain.h"
#include "simulation.h"

Each simulation must declare a class derived from the Simulation class, as discussed

previously. For our example, the subclass will only be concerned with the following function

entry points:

class Test Sim : public Simulation
{
public:

Test_Sim: :Test_Sim{);
void init_sim(7;
void propagate(int4 exitflag);

// Superclass Members
// Terrain* Ter;
// Pfmr_Renderer* Renderobj;

Stealth_Player* Stealth;
View* MyView;

};

Page 64

As the design chapter discussed, most ObjectSim functionahty is provided by instances of the

class called Player and it's subclass Attachable_Player. Next is the basic stealth view player (no

representation in scene), whose job will be to give a viewpoint into the simulation::

class Stealth Player : public Attachable Player
{ ~ -
public:

Stealth_Player() ;

// Superclass members:
// Flt_Model* Model;
// pfCoord* Coords;
// static Pfmr_Renderer* Renderer;
// static Terrain* terrain;
// pfVec3 base_offst;
// pfVec3 basejrot;
void init();
void propagate(){};

};

These two inherited classes are needed to build the basic simulation. The Test_Sim class

contains the ObjectSim objects which will be created and linked together to form the basic

ObjectSim model discussed in Chapter 4. The work is done in the constructor for the Test Sim:

Test Sim::Test Sim()
{
Ter = new SimpleJTerrain() ;

Renderobj = new Pfmr_Renderer() ;

MyView = new View() ;

Stealth = new Stealth_Player();

// These must be done for one of the players
// only. They are static data members
Stealth->terrain = Ter;
Stealth->Renderer = Renderobj;

// Also done for only one view
MyView->Renderobj = Renderobj;
// Called on each view
MyView->alloc shared();

}

Page 65

With this constructor, the basic model is formed. Test_Sim has instantiated its Terrain as

Simple_Terrain (one flight file). It has one View and one Player. The constructor is called by the

main program, which also instructs the Pfmr.Renderer to perform the initialization and to enter

the main loop. The code for the main program is:

int main (int arge, char *argv[])
{

// The simulation
Test_Sim* MySim;

// Initialize Performer
pflnit();

MySim = new Test_Sim();

// Cause the muultithreads to be kicked off and
// Opens the default window. Calls init_sim()
MySim->Renderobj->init(MySim,1,MySim->Ter);

// Cause the main loop to execute. Will not
// return. Calls propagate()
MySim->Renderobj->render() ;

exit(O);
}

Test_Sim will customize the model for its own purposes by fulfilling the abstract function calls

init_sim and propagate. In this case, the initialization code looks like:

void Test Sim::init sim()
{
int found;

// Read the terrain file and place in
// rit_Model number one
Ter->readmodel("terrain.fit",1,found);

// Initialize the player functionality here
Stealth->init();

//A new view on pipe 0. Cannot be done until
// init_sim (after Performer fork)
MyView->new_view(0);

// Connect this view to the stealth player
MyView->attach_to__player (Stealth) ;

Page 66

Test_Sim has initialized its View and attached it to its single Player. The SimpleJTerrain had

been read in and is ready for rendering. The player has been initialized. Now, propagate will be

called once per frame to perform the simulation. The code is:

void Test_Siin: :propagate (ints exitflag)

// This call will propagate the attached
// player regardless of which player is
// currently attached to the view.
MyView->get_attached()->propagate();

The only processing done each frame (by Test_Sim) is to propagate whatever player is

attached. The viewpoint location and movement are entirely defined within the Stealth_Player

attached to the View. The Stealth_Player code is:

Stealth_Player::Stealth Player()
{

//Location, Orientation member
Coords = new pfCoord;

)

void Stealth Player::init()
{

// Set initial position and orientation
PFSET_VEC3(Coords->xyz, O.Of, -300.Of, 100.Of);
PFSET_VEC3(Coords->hpr, O.Of, O.Of, O.Of);

// These are for an attachable player. They
// define a position and orientation within
// the object where an attached viewer is placed
PFSET_VEC3(base_offst, O.Of, O.Of, O.Of);
PFSET_VEC3(base_rot, O.Of, -15.Of, O.Of);

The propagate member was declared null in the class definition. The Stealth_Player will

constantly sit in one place and do nothing. The Test_Sim simulation will just show a fixed view

of the terrain.

Page 67

That completes the implementation of the basic simulation. Notice that the programming

complexity and level of effort required to get started was small. The combination of Performer

and ObjectSim requires the developer to master little of the complexity of the design before

starting to work. To make a more interesting simulation, the developer must provide more

interesting players to go into the simulation, but the basic architecture stays the same.

5 J Virtual Cockpit Instantiation

The Virtual Cockpit was implemented as a player incorporating an aerodynamic flight model

with various display modes and weapon systems. Figure 25 presents the design of the subclasses

of ObjectSim classes used for the simulation.

Player

I
represents

Fit Model
Terrain

Attachable_Player
Pfmr_Renderer

nu Simulation

- A-

Bomb Carries

100% reuse layer

View

T

changes

Modifier

VC_App
uses

Base_Net_Player
^li

X
Head Tracker

Spaceball

manages

Missile
Airplane

Sim_Entlty_Mgr

VC_Net_Player manages

VC_Net_Manager

Radar
Throttle &
Stick

Hua Ins
Application layer

Figure 25 - Virtual Cockpit Partial Design

Page 68

Figure 25 is not intended to show complete design information, but rather to show the types of

problems faced by the Virtual Cockpit research students. The diagram shows that the Virtual

Cockpit designers were able to concentrate on modeling an airplane and its weapons and

subsystems, rather than writing a simulation design from scratch and re-implementing common

functionahty. Below the dotted line on Figure 25, the Virtual Cockpit designers were responsible

for designing and implementing the classes. Above the dotted line, they were simply reused.

Besides the basic ObjectSim model, the VC also reused the network manager subsystem for

receive network entities. The level of reuse achieved with the ObjectSim design allowed the

thesis students to focus on such problems as accurately simulating a modern weapons system, and

to spend less time on non-research-specific details.

The code example below shows the class definition for the Airplane class, which encapsulated

the other aircraft subsystems

class Airplane : public Base_Net_Player
// Base Net Player is used for remote and local
// DIS players
{
// Application thread calls for airplane
void init ;) ;
void propagate(); // Move one tick
// Draw thread calls for airplane
void init_draw();
void draw(); //Do any drawing for one frame

// Base Net Players must provide a
// function to accept damage from remote
// weapons
void accept_damage(pfVec3 location,

munition_warhead weapon);

// The aerodynamic Model
State* AcftState;
// Throttle and stick class
// (Hands On Throttle And Stick)
HOTAS* MyHOTAS;
// The Heads Up Display
HUD* MyHud;
INS* MylNS;
Weapons_Controller* MyWeapons;

};"

Page 69

The above class definition show:, how the Airplane must provide functions to perform certain

processing at certain times. This is the contract each player has to fulfill to exist with the rest of

the architecture. The init, draw, draw, and propagate functions are the calls used by the

architecture to control the player. Many of these calls may be left out, if there is no need for

them. The superclasses for the player contain default functions. This illustrates one of the best

complexity management techniques found in Object Oriented languages. A superclass can

provide a standard set of functionality, and the subclass can override this if necessary. Therefore,

an architecture like ObjectSim can provide an almost complete application, if the application

needs little customization. As the appi cation needs to customize parts of the architecture, it can

do so by declaring custom methods a» appropriate.

Note how the designers were able to utilize a top to bottom object oriented design for the

airplane. The ObjectSim architecture was designed to facilitate object oriented simulations. This

is a key to the complexity managemem features of ObjectSim.

5.4 Satellite Modeller Instantiate n

The Satellite Modeller was desirued as a simulation allowing a set number of satellites to be

propagated around the earth in either real time or time step based propagation. It includes a

subclass of Terrain called Space_Terrain, which implements the terrain as a rotating earth model

with the moon, stars, and a realistically positioned sun light source. The propagator code was

based on code from the Space Operations program at AFIT.

The interface requirements for the Satellite Modeller were for a highly interactive GUI

allowing user flexibility. The simulation is configurable for number of constellations, number of

satellites, and viewing modes. Also, the simulation is designed to take advantage of the

Page 70

device-independent nature of ObjectSim by providing interfaces to a head tracker for an

immersive operation mode. To accomplish this, an off-the-shelf GUI toolkit was used to design

and build the interface. The ObjectSim simulation was designed to take the interface state and

control the simulation, viewpoint, and other factors.

Player

I
represents

Fit Model
Terrain Simulation

Attachable_Player

~1^

A-
■^

View

T

Pfmr Renderer
changes

Modifier

Space_
Terrain

Sat_App

Sat_View_Playei

1
Sat_Player H

R?
uses

X
Head Tracker

Spaceball

controls

Application layer
controls

1
SM Interface

managerj
GUI Form

Figure 26 - Satellite_Modeller Partial Design

Notice the similarity of Figure 26 to Figure 25. Each ObjectSim application will follow the

same basic design, with differences showing up in the unique processing required for each. The

ObjectSim layer provides a template for each simulation and objects for each simulation to use.

5.5 Architecture Growth

Each of the four major applications implemented with ObjectSim added to and stretched the

breadth of the requirements the library covered. The multiple channel simulations (RDT, Virtual

Cockpit), required the library to correctly manage the shared scene graph and call the threaded

Page 71

member functions correctly. The RDT implementation paved the way for integration of the GUI

interfaces into the applications. For each new problem solved, the major challenge was to fit it

into the architecture while preserving a good design and not perturbing the existing code too

much.

Several project developers completed reusable pieces which were able to be successfully used

by other parts of the architecture. The RDT contributed the design method for integrating the

forms, which were later used on the Satellite Modeller and the SBB. The SBB developer

contributed the Model Manager, a way to manage the large model sets found in large simulation

application:. The SBB also saw the design of a set of reusable interface objects which use

innovative transparent representations to make them useful for immersive/console simulations.

The Virtual Cockpit project contributed the GraphText implementation, which provides a nice

stroke vector capability for in-scene text drawing. The Satellite Modeller project pioneered the

use of a new loader for geometry as an alternative to the Multigen Flight format.

5.6 Effectiveness

The architecture provided considerable help for some of the development problems observed in

our initial analysis. Table 5 enumerates some of the effects of our object oriented approach

Page 72

Problem Observed Effect

No one responsible for std components ObjectSim provides a toolbox of
components designed to fit together

No one responsible for evaluating and
integrating new outside code

ObjectSim developer performed analysis in
this area

Existing components hard to understand Students had to understand ObjectSim
approach, but less detail than before

No standard library locations, CASE, or
CM to support large developments

ObjectSim captures a lot into one übrary,
but does not solve CM problem

No design methodology adopted ObjectSim facilitated a reasonable Object
Oriented approach to simulation design

Students don't have time to become well
grounded in languages or design methods

ObjectSim provides design, reduces the
amount of code necessary for success

Simulation projects didn't have stable
requirements

ObjectSim allowed quicker maintenance
turnarounds; simulation design stable

Table 5 - Development Improvements with ObjectSim

This isn't to assert that merely building a library will solve all development problems in a

particular setting. However, the existence of the application framework aid help the lab's process.

By using the application framework strategy, the developers could actually build rapid prototypes

of their applications which became the base for final implementations. Since the final versions

of each application also use the library, typically these prototypes were not throwaway, but

became the basis for the final software.

With this kind of ability, developers were able use a risk-based approach to manage their

development. They could approach the most risky parts of their development first, knowing that

an architecture and its inherent engineering knowledge would provide much of the standard

low-risk capabilities their application needed. This, I think, is the basis for the positive effect

ObjectSim (and Performer) had on this years research prototypes.

Page 73

The flexibility and success ObjectSim had owes much to the capabilities developed by the Iris

Performer Group at SGI. Performer does provide a lot in terms of library calls and an object

based C interface into a visual simulation. The contribution ObjectSim made was to take the

abstraction of Performer one level higher, and to package the capabilities Performer provides into

a reusable simulation.

The projects using ObjectSim and Performer have amassed quite a track record this year. The

Virtual Cockpit has run on the console, in a Head Mounted Display at SigGraph, and on a Barco

Multi Screen Display at the ARPA Sim Center. The Synthetic Battle Bridge has run at the

console, at SigGraph in a boom, and at the ARPA Sim Center on a big wall. The RDT has been

taken on the road to Nellis AFB and has demonstrated that a single AFIT student working with

some good tools can replicate years of effort by contractors on a viewing console. The Satellite

Modeller has impressed its user community and provided some striking visual images at the

ARPA Sim Center and at AFIT demos.

In support of the DIS research goals and the Warbreaker program, AFIT has provided a

man-in-the-loop flight simulator with multi-mode operation, a stealth console with intuitive

interfacing capabihties, Red Flag DIS data on the network and a console to view it on. and

satellite data on the network with a simulator to generate and view the satellites in orbit. Just the

DIS applications in the AFIT lab alone form a good testbed for some of the concepts DIS and

Warbreaker are meant to explore.

5.7 Lessons Learned

All of these developments weren't without some problems. One major hurdle was the C++

language expertise necessary to successfully use the architecture. Students were not prepared for

Page 74

full object oriented programming and using the methods of customization required for the

architecture. Although the amount of code necessary to customize the design was small, deciding

where to fit the code in was not as easy. Second, errors resulting from dependencies in the code

and from the Iris Performer basis for the code were not always intuitive. Third, short timelines for

development meant the developers often did not have adequate time to learn the architecture

before pressing ahead.

As noted earlier, the lack of Configuration Management still plagued the Graphics Lab. Large

simulations require data files, models, libraries, and many other parts. Often, these all didn't work

together as they should, because everyone working in the lab didn't maintain a baseline.

C++ on the Silicon Graphics machines provided us with some interesting moments. For most

of the thesis cycle, we struggled to find a way to make the objects behave correctly when they

were allocated from shared memory using the SGI shared memory features. The run-time did not

preserve the virtual function table for member functions when the parent was allocated by casting

a shared memory allocation call back to the object type. Using a call to the Performer allocation

routine, we tried:

class My_Player : public Player

void init() ///VIRTUAL FUNCTION IN PARENT
void propagate()'

}

My_Player* Test;

 in some function
// ALLOCATE TEST FROM SHARED MEMORY
Test = (My_Player*)pfMalloc(sizeof(My_Player),

pfGetSharedArena());

Test->init(); //BOOM - Segmentation Fault

As a result of this problem, the simulations using shared memory for input or output

interfacing requirements had to allocate shared memory structures, or treat many of their objects

Page 75

as structures instead of true objects with callable member functions. Designs evolved wim classes

intended as member functions for other classes, to get around the problem. Needless to say, the

cleanness of the object oriented designs began to suffer under these restrictions.

Two students finally came up with a solution to this after working on the problem for a while.

The key turned out to be using a constructor for the object which handles the shared memory

allocation. The new code segment looks like this:

class My_Player : public Player

My^Player() ///CONSTRUCTOR
void init() ///VIRTUAL FUNCTION IN PARENT
void propagate()'

}

My_Player* Test;

My Player::My Player()
{
this = (My_Player*)pfMalLoc(sizeof(My Player),

pfGetSharedArena());

 in some function
// CALL CONSTRUCTOR
Test = new My_Player();

Test->init(); //OK, DOES NOT FAIL

So, the final work done for the architecture uses this style of shared memory object rather than

the old style of shared memory substructures.

One other lesson I learned was the importance of the development environment to the success

of a project. Many times in the lab we hurt our cause because of lack of change control, lack of

tools on different machines, and lack of CM for the many components of a large simulation. A

typical problem might see a developer change a header file another developer depended on. When

an application was linked which contained two übraries built with two versions of a particular

header file, the result was usually a non-intuitive crash. A development environment with as many

Page 76

peopt; and machines as the Graphics Lab at AFIT needs good procedures to keep occurrences

like this from slowing productivity.

The next section contains some measurements I made of the software and the development

process in the Graphics Lab. I will show metrics involving performance and reuse and discuss the

software work in the Lab relative to these issues.

Page 77

VI Measurements and Performance
6.1 Graphics Lab Metrics

Any software effort requires some measurements to quantify the work developed. Metrics can

answer questions about reliability, maintainability, performance, testing success, or development

effort expected or expended on a project.

With the developments in the Graphics Lab, the most important concerns are performance and

reusability. Performance has always been important in real-time, interactive simulations. Slow

performance translates to slow visuals, which can significantly hinder a simulation's believability.

Reuse is always desirable because it translates into improved productivity. However, to be

effective, students must be able to take the reusable pieces without redeveloping them, or they

will bog down in unnecessary detail. The measurements I took were mostly in these areas of

performance and reuse.

I took the philosophy of measuring those things which I felt would yield some good data for

analysis and recommendations. I included with the measurements recommendations based on any

conclusions which can be drawn or inferred from the measurements.

6.2 Reuse Metrics

Reuse metrics have always presented a difficult problem to software developers. Typical

approaches will attempt to show the lines of code reused versus the lines of code developed for a

particular problem. When trying to consider the effectiveness of reuse on a particular problem,

this can be inadequate.

ObjectSim can be thought of as a composition system. It uses the composition medium, the

C++ language, to specify components in the visual simulation domain. These simulations are also

composed of other reusable pieces, such as math libraries. Performer, a GUI library, string and file

Page 78

Utilities, and other assorted pieces. Each simulation really can be thought of as an integration

effort to bring all of these pieces together. In a setting like this, metrics can be especially difficult.

I chose some high level metrics which I felt would show the reasons behind the Graphics Lab

success this thesis term.

The first set of metrics (Table 6) for our Lab attempts to quantify the effectiveness of the

ObjectSim approach on developer focus, or the percentage of design, implementation, and testing

time the researchers applied to research specific problems while creating their ObjectSim

applications. Research specific problems are those which are not concerned with the mechanics

of the simulation (e.g.; how do I put my view here?), but more concerned with the domain the

simulation is a part of (e.g.; how do I model a radar?). These numbers are based on discussions

with the developers, who attempted to quantify the time they had spent on their thesis efforts.

Simulation % Design Time
research specific

% Coding Time
research specific

% Lines of code
research specific

% Testing time
research specific

Virtual Cockpit 80 70 75 65
Satellite Modeller 80 90 85 60
Synthetic Battle
Bridge

70 75 70 75

Red Flag Remote
Display Tool

90 80 75 90

Table 6 - Developer Time Expenditure Survey

Past students were not available to interview about their time expenditure. In the Virtual

Cockpit and Satellite Modeller cases, judging from the functionality the developers were able to

achieve this year versus last year, my best estimate is that the developers were significantly more

domain focused this year. Whatever the improvement, the student developers do feel the

Page 79

combination of ObjectSim and Performer has freed them up to focus most of their time on the

specifics of their research.

The next set of metrics show the level of cooperative development. They show to what level

developers of multiple ObjectSim simulations were able to share work. The numbers are

percentages of code developed for one simulation and reused on another, either by use as a design

and code template or by directly using a class. We are not including reuse from sources other

than other ObjectSim simulations. Table 7 presents another set of data which is difficult to pin

down, because I developed ObjectSim by incrementally implementing the applications and

capturing reasonable pieces of reuse from them as they were developed. The applications are

presented in the order of their implementation using ObjectSim. Percentages are developer

estimates combined with other developer data to assess the overall reuse effectivenesa.

Simulation

Virtual Cockpit

Red Flag Remote
Display Tool

Synthetic Battle
Bridge

Satellite Modeller

% of code contributed

50

30

15

% of code reused from others

10

50

50

70

Table 7 - Software Sharing In Graphics Lab

These metrics, which indicate some effectiveness of the ObjectSim approach, are presented

with the caveat that the developer of ObjectSim was around to aid development of these first four

applications. To realize this types of benefit, a developer must have a good understanding of the

architecture. It thus becomes important to provide design information and, preferably, a User's

Manual for developers. Also, a responsible party for overseeing and guiding development, such

Page 80

as a faculty member or reuse specialist, will facilitate this kind of reuse. Appendix A is a User's

Manual I developed for the ObjectSim framework.

The last set of reuse metrics does not really involve numbers. What I will attempt to show is

the way in which each successive ObjectSim application contributed functionality to the library

which was picked up by another application. I will do this by listing classes or problem solutions

developed for one application and then reused by another. Minor subclasses are not listed .

Application

Virtual Cockpit

Classes/Capabilities contributed

Red Flag

Synthetic Battle_Bridge

Simulation, View, Flt_Model
Simple_Terrain, PfmrJRenderer,
Modifier Polhemus_Modifier,
Sim_Entity_Mgr, Player
Base_Net_Player, Event,
Animation_Effect_Player,
Round Earth Utils

Multichannel Display, Network
Manager, Independent Scaling,
Spaceball (SGI), Forms bridge,
Trails queue

Classes/Capabilities Reused

Model_Mgr, Multichannel display.
Network Manager

Satellite Modeller

Model_Mgr, Button, Multichannel
boom display, Locators, Fonts,

Space_Terrain, Stars

Simulation, View, Flt_Model,
Simple_Terrain, PfmrJRenderer,
Player, Base_Net_Player,
Model_Mgr, Event, Fonts
Animation_Effect_Player,
Round Earth Utils

Simulation, View, Flt_Model,
Simple_Terrain, Pfmr_Renderer,
Player, Base_Net_Player, Event,
Animation_Effect_Player,
Sim_Entity_Mgr, Network
Manager, Round_Earth_Utils,
Forms bridge

Simulation, View, Flt_Model,
Pfmr_Renderer, Player,
Round_Earth_Utils, Forms bridge.
Locators, Fonts, Trails queue

Table 8 - Capabilities Contributed or Reused

This listing really shows two important facts about the Graphics Lab developments this year.

First, the visual simulations do share a common design, as evidenced by their reuse of the

Page 81

ObjectSim architecture. Second, this common design fostered working together. The various

developers helped each other many times, because they were all working on similar developments.

The developers collectively created a capable set of engineering solutions for visual simulation

problems.

The lab lacked tools for measurement of the software. We were able to compute some lines of

code (LOG) measurements to give an idea as to the size of the projects. The LOG counts varied

for the developments using ObjectSim from around 5000 to over 20000. For the Developer's Guide

simulations, the average LOG for the instantiations was 900 lines. The complexity is found mainly

in the understanding required for inheritance based G++ programming. The actual algorithms in

the architecture are not complex. The code mainly consists of function calls (to other ObjectSim

objects, to Performer, or to other libraries). Some of the applications contain more complex

algorithms, but these are concerned with their research specific problems, not their simulation

interface.

6.3 Performance Measurements

The simulations in the Graphics Lab have many factors which determine their performance. I

will present some measurements of frame rate, and relate these back to the various factors which

contributed to the speed of the applications. These factors will include geometry management,

overlay GL drawing management, device handüng, multiprocessing, non-frame-critical

processing, network interface efficiency, shared memory locking, compiler optimization, debug

logging, and G++ language constructs.

The method I followed to obtain these performance measurements and recommendations was

to maintain a controlled testbed. This was the ObjectSim application I used to implement each

new piece of ObjectSim functionality into the library. As the functionality was implemented, I

Page 82

instrumented the application, usually with standard Performer performance data, to see the affects

of my changes. In this way I determined the performance characteristics of various methods of

doing things in a simulation. More precise data would have come from profiling the application,

but I will leave that to future work.

6.4 Geometry Management

Geometry management is the process of reducing the number of polygons sent through the

graphics pipeline while maintaining a realistic simulation. In performance measurements we did,

this factor always impacted performance more than others. Geometry management has many

facets, mostly dependent on the hardware capabilities. Hardware capabilities are mostly outside

ttif scope of my software library, so I established some baseünes for the tests. The performance

measurements were taken on a four processor, single Raster Manager Onyx, which means that

texture in the geometry was not a factor. Each simulation used the standard three processors for

the Performer threads. Frame rate control was set to free run, without waiting for frame

boundaries. Each application ran in the same size window. On other machines, the frame rate

will vary depending on the hardware pipeline, the texture in the geometry, and the number of

processors, and the number of Raster Managers in the machine. In a test with an unsophisticated

simulation (just movksg a viewpoint around with a rudimentary interface and little computation), I

obtained the measureme-ßß in Table'/ as I varied the parameters.

These results illustrate the first pcrfonnaif i2 ^csult we have found in the lab: the geometry

management, and specifically tb« reduction of polygons, is the biggest determinant on the

performance of an application. Tfos doesn't mtm » application is guaranteed good performance

if it does this, because applications can fall into many other pitfalls. It means that if an application

doesn't manage geometry complexity, it will suffer a performance penalty. Geometry

Page 83

management is primarily achieved by structuring terrain and models with levels of detail which

decrease to low-polygon representations as the viewpoint goes away from them.

Geometry Parameters

2000 poly, no LOD, no tub

9000 poly, No LOD, no tub

2000 poly. No LOD, viewer in tub

9000 poly. No LOD, viewer in tub

LOD Terrain, no tub 100 polys in farthest
LOD, LOD cells 10 km on a side with 4
LODs

Same as before, in tub

Performance results

30hz steady

18hz low, 30 hz high, dependent on view

15hz low, 25hz high, dependent on view

12hz low, 25hz high, dependent on view

20hz low, 25hz high, frame rate more steady

15hz low, 20hz high, frame rate steady.

Table 9 - Geometry Complexity Performance Effects

The second point illustrated above is the fact that an immersive simulation with geometry

drawn around the viewer will cause a penalty. This is because geometry around the viewer is

pixel intensive (each polygon drawn covers more pixels). This has the affect of increasing the

drawing time of the application. Immersive geometry should be used only when necessary to the

realism of the simulation.

6.5 Overlay GL Drawing

Overlay GL drawing involves rendering two dimensional or three dimensional GL polygons or

text after the Performer geometry database has been rendered. This type of drawing can also

impact performance, and this section will discuss ways to manage this impact.

The most important point about drawing is that any resources consurpri oy wz GL drawing

add to the time required to render geometry, and geometry drawkfj is typicftity the böttJeaeck f jr

visual simulation. Therefore, drawing should not involve expensive „alcialions dCiC on the drew

thread. Instead, the drawing parameters should all be coraputea &ü4 rmtd, sc iii tkt c« '''v^sd

Page 84

has to do is the GL rendering. This storage technique typically works well with a protected data

structure, since two different tasks will be accessing the data.

In our tests, 2D GL or text drawing typically did not affect the frame rate more than 1-3 Hz.

The exception to this was when an application used Forms, a GUI package based on GL.

Applications typically slowed down by over 5 hz when a complicated form was displayed. All of

the forms processing, including the non-drawing background data structures, is performed on the

draw thread. Even so, the Forms applications maintained a respectable frame rate despite the

GUI overhead. The RDT, with a complex form and two separate drawing channels and over 100

moving entities still maintained a steady 15hz frame rate. These numbers reflect the effect from

Forms drawing, not Forms event handling (user input).

6.6 Device Handling

Device handüng refers to the process of obtaining user input from a device. In the Graphics

Lab, we have used many input devices, including the keyboard, mouse, spaceball, head tracker,

boom, and throttle/stick. This section will discuss the possible performance penalties of these

devices, and the benefits of using tasks to avoid long reading delays in time critical threads.

The keyboard, SGI spaceball, and Forms GUI all operate using the standard device queue

available on SGI machines, which can only be read by the draw process. This implies that all

input must be taken by the draw process when these interfacing techniques are used. For

performance purposes, expensive actions based on these inputs should be deferred to the

application process. Also, the queue handling is important. A performance penalty can result if

an application tries to requeue events it reads, so a later queue read can use them. This can result

in many useless events being requeued, and long event reading loops. A better design is to

Page 85

centralize the queue read in one place, ano pass the events around to each interested object in the

program, so they can act on them if desired.

Devices such as the head tracker or the throttle and stick present different problems. Many

times these devices can be slow to respond to requests for their value. In one test, the

throttle/stick used for the Virtual Cockpit accounted for 18% of the processing on the application

thread. To solve this, these device interfaces can be implemented as tasks, which operate

asynchronously and maintain a state which the application then reads.

6.7 Multiprocessing

In discussing multiproccising, I am referring to partitioning the application up into tasks which

operate asynchronously or with synchronization. The processes are designed to avoid bottlenecks

which can slow the throughput of geometry. Multiprocessing is a common technique to attack

complex computational problems like visual simulation.

Each ObjectSim application inherits a design intended to take advantage of the Performer three

process model for running a simulation. The simulation is divided into application, cull, and draw

threads, a design based on the time-critical nature of the drawing process, which must keep the

hardware geometry pipeline full as much as possible. This level of multiprocessing is available to

even the simplest ObjectSim application.

The more complex an application becomes, the more need there may be to add more multiprocess threads.

For DIS applications with a receive network interface, the part of the application which reads the

incoming message buffer is typically a task, since messages are lost if the buffer is full when they

arrive. Device reads are other typical areas for tasks, since they can involve blocking while

waiting on a read. Expensive calculations can often be multiprocessed, providing a speedup for

time-critical processes which use the results of the calculations.

Page 86

6.8 Frame-Critical Processing

Every frame a visual simulation performs many necessary functions to compute a viewpoint.

Often, the correctness of the simulation depends on certain calculations, and these must be done

each frame. An example is computing a time step of the Virtual Cockpit and moving the airplane.

A common mistake, however, is to try and handle all process..^ for a particular thread in one

thread of control on the application thread, even when the processing could wait for more time to

be available. The problem can occur when expensive floating point calculations or device reads

are used. Multiprocessing was one solution to this problem. This section will explore other

solutions.

One solution to this problem is to only do the offending calculations periodically. If the

periodic calculations can be tasked, this might work. Sometimes, though, the periodic calculation

involve data structures which are only visible on one thread, such as the Performer tree, which is

only accessible to the simulation on the application thread [SGI, p]. But, if the expensive work is

done periodically on the application thread, during the work a slow frame occurs, resulting in a

jerky appearance.

A better solution we came up with in our lab was a technique called subdivision. Subdivision

is a method of dividing a set of work over n iterations by only doing 1/nth of the work each frame

for n frames. This works well for arrays of objects which must have some calculations performed,

if the calculations are not critical to the realism of the simulation. In a test of subdivision with

radar calculations, the Virtual Cockpit subdivided over 10 frames intersection testing and

coordinate conversion for 300 objects in its radar. The result was an improved frame rate, from

lOhz to 15hz, just from this one change.

Page 87

6.9 Shared Memory Locking

Shared memory is necessary when using multiprocessing to communicate between the tasks.

Often, this memory needs protection from mutual update or reads of incomplete data structures.

On the SGI machines, applications use locks associated with their shared memory for this

purpose. A common technique is to allocate a large shared memory block for sharing between

two processes and to lock it when one or the other wants access. A problem arises when one

process is slow during its access, because the other one may be waiting on the lock for too long.

Again, if one of the processes is time critical, the all-important frame rate can suffer.

Many times, the whole shared memory area does not need to be locked for the concurrent

processing. If the concurrent processes are iterating over some array or list data structure, only

accesses to the same element must be locked. This can be accomplished by assigning different

semaphore locks to different portions of the data structure, or by dividing some number of

semaphore locks over a large array. Then, the concurrent tasks can avoiding blocking each other

out unnecessarily.

The other point about locking is that, if a time critical process cannot wait, it should test the

lock first before trying to wait on it. This means it might wait a frame or two for an update from

the shared memory area,)ut this is often superior to waiting on a lock that will slow dov.i the

frame rate.

6.10 Network Interface

The network interface design is particularly important from a performance perspective. This is

the portion of time a D1S apphcation spends maintaining the correct state of the entities coming

over the network. This usually involves reading the network buffers, accepting or rejecting the

entity as important to the current simulation, dead reckoning the entities, converting the incoming

Page 88

coordinates into the simulation coordinate system, and correctly displaying the models. When the

number of entities increases into the hundreds or thousands, the efficiency of these steps becomes

very important.

The original network interface was what I will refer to as a thin-wire interface. The Entity

Object Manager had the job of reading the network buffers, storing the entities, dead-reckoning

them, and communicating their state to the application each frame when the application asked for

an update. It was configured to perform the buffer read and dead reckoning on a separate task,

so it could keep up with the incoming network buffer. In DIS, however, network entities

broadcast their position and orientation in earth-centered coordinates, and the application was

converting these two vectors into simulation coordinates each frame, whether or not any new

information had arrived, since the Object Manager was dead-reckoning. Since a coordinate

conversion involves 64 floating point multiplications per vector, the computation blocked the

application thread in a hurry when the number of entities went up. Another inefficiency was the

fact that the Object Manager copied its entity state into the appücation data structure for each

entity each frame, whether any new PDU had been received or not. The net result was an

interface that did not scale well for large numbers of entities.

To redesign this for performance reasons, I first created a field where I could store the

information if a new PDU had been received. Then, I only performed copying on those entities. I

only did the earth-centered-simulation coordinate conversion when I received a new PDU, and I

put this calculation off in a task. To protect the coordinate values during these conversions, I

assigned each remote player object a semaphore lock from a set of locks I was maintaining, to

avoid the problem I discussed above with one lock for a large set of data. Only converting when

Page 89

a new PDU was received meant my application now had dead-reckoning responsibility, so I

added the dead reckoning calculations on the application thread, which ensured smooth

movement. The net result of these changes was the frame rate went from 3hz with 400 smoothly

moving entities to 15hz with 400 smoothly moving entities.

Two other important points about network interface are gecmetry management and culling

entities based on their interest to the simulation. When many vehicles from the network are

displayed, the polygon count goes up. To manage this, network entities should have low polygon

LODs so they will not draw many polygons when they are not close to the viewpoint. Similarly, a

cull step in the network interface will not process entities which are not of interest to the current

simulation. For instance, the Virtual Cockpit can selectively decide which entities it cares about

based on its radar setting and possibly other parameters. So, in its network interface, it can test

incoming entities to see if it needs to maintain them in its processing loop.

6.11 Compiler and C++Language Issues

This last section of the performance chapter will discuss the impact of the so called expensive

C++ language constructs (virtual functions and object oriented design) and compiler optimization

on the performance of our AFIT visual simulations. I will discuss a test I performed involving

virtual functions in particular, and briefly discuss compiler optimization of C+f.

The performance concern for C++ comes about when a virtual function call is performed, and

the run-time must make a decision about which subclass will handle the call, based on the type of

the object. Fast C++ runtimes implement this as a fixed offset into a table of function addresses

based on the type field of the object, commonly referred to as a virtual function table. For my

test, I surmised that a virtual function call would add little overhead to a simulation, in

comparison to floating point calculations, device reads, etc. I set up a test where I performed

Page 90

virtual function calls on network entities each frame - an average of one call per entity. I linked in

a set of simple geometry to reduce the effect of geometry on the result. I performed basic

processing during each call. I found that as the number of calls went up, the frame rate degraded

only slightly. For 10 entities, I recorded 20hz. When I increased to 100,1 still recorded 18 hz.

400 entities reduced the rate to 15hz. I believe that about half of the degradation is due to the

virtual function overhead. Based on this, my feeling is that visual simulation applications can

successfully employ this technique to improve code structure and reusability.

The C++ translator and C compiler on the SGIs provide different levels of optimization. All of

our best performance results were obtained using the second level (02) optimization switch on

the compile line. To further improve performance (and get the benefit of register optimization),

the applications could explore the use of the third level (03). I believe this level will remove

virtual function overhead that can be statically determined at compile time (where no truly

dynamically determined heterogeneous function calls are being performed). However, this

changes the configuration management, since libraries now cannot be linked in as object code,

since they must be optimized also.

6.12 Conclusion

The developments in the Graphics Lab benefited from the reusable architecture approach of

ObjectSim. The developers were able; > share classes and reuse problem solutions. The numbers

we collected were based on the assessments of the developers using the architecture, and indicate

that the object oriented approach of ObjectSim is an effective way to accomplish reuse in an

environment such as the Graphics Lab at AFIT.

A visual simulation application can run into many pitfalls which can impact its performance.

This section has presented some of them and has discussed my experience in the Graphics Lab

Page 91

with improving the performance of simulations. I discussed several areas of performance

improvement. The real key to performance is to understand what the simulation is doing every

frame and answer the questions: Does it block? Does it do expensive floating point? Does it need

to be done every frame? Answering these and tailoring the simulation code will improve

performance problems in many visual simulations.

The final chapter will discuss the results achieved in the Graphics Lab this year, relative to the

initial goals of the research. Ako, I will discuss the future direction for this work, and present

some recommendations for the future of DIS at AFIT now that an architecture like ObjectSim is

available.

Page 92

VII Conclusions and Recommendations

7.1 ObjectSim

ObjeciSim was the name for the reusable simulation architecture this research created. It was

a tool which allowed simulations to be written at a higher level than they had previously been

done at AFIT. In its present form, ObjectSim provides a good, but not complete, set of

capabilities to a simulation developer looking to get an application going quickly. It can be

improved in several ways. This chapter summarizes the research accompjishments and then

provides recommendations for improvement.

7.2 Accomplishments

This research met many of the goals outlined in Chapter 1. ObjectSim was successfully used

on four different thesis projects, and became the backbone architecture for visual simulations in

.; ^ Graphics Lab at AFIT. By using an object oriented architecture, the student developers using

ObjectSim were able to bypass much of the complexity of writing a visual simulation and

concentrate on research-specific simulation topics. ObjectSim provides a reusable renderer,

several device interfaces and a device-independent interfacing strategy, modes for data display,

and many elements of a reusable DIS interface.

The projects using ObjectSim were quickly and incrementally developed. ObjectSim is a

rapid-prototyping capability for visual simulation, with a robust enough design that the prototypes

don't need to be rewritten to be useful as final products. The exiting simulations in the Graphics

Lab now share a common, proven design, which should increase the maintainability and usability

of the research work accomplished in the lab th. year.

Page 93

Each of the ObjectSim projects reached impressive levels ot capability while vahdating the

inheritance-based extensibility on which ObjectSim was designed. The Virtual Cockpit can run in

three different viewing modes, including an HMD and a multi-screen cockpit at the ARPA Sim

Center. The Satellite Modeller improved substantially on previous years' work, and provides a

very impressive, visually striking simulation. The Synthetic Battle Bridge has innovative user

interface techniques which explore new ground in immersive simulation. It also runs in several

modes. The Red Flag Remote Debrief ng Tool is a powerful display console for Red Flag data

which was deployed on-site to test its effectiveness and received praise from users. All of the

simulations were a success. The reuse we achieved with our object oriented approach is a big

reason for the success in the lab this year.

I have several recommendations for improving and extending this year's work. Many of the

capabilities developed for the applications this year could be captured and made into reusable

pieces without too much effort. This would result in a more powerful reusable simulation with a

greater amount of engineering expertise built in.

7.5 Architecture Problems

Much of the übrary was implemented before I discovered the shared object solution discussed

in Chapter 5. The applications would be a lot cleaner and more understandable if the whole

library were converted to use constructors for the various objects, and to eliminate shared data

structures inside the ObjectSim code. Then the simulation class could have pointers to the

Pfmr_Renderer, Terrain, View, and a dummy Player declared in the superclass header. A default

class constructor could initiaüze the simulation and assign most of the pointers together, making

the application subclass responsible only for customizing the simulation, and not the messy object

Page 94

assignments it does now. Using this same technique, the applications could be converted to have

cleaner designs, and to get away from most of the shared data structures they maintain now. The

example programs found in the Application Developer's Guide are designed in much cleaner ways

than the actual instantiations.

The Terrain and Simple_Terrain classes are lacking in their abstraction. Specifically, I didn't

completely specify the functions the Terrain class should require of its subclasses to be abstract.

The Simple_Terrain as originally implemented also had the static features defined inside, and this

is questionable abstraction. A better design would be to have another class responsible for the

dynamic aspects of the world, and to have the application instantiate one of these if it needed it.

The Sini_Entity_Mgr class, part of the network interface, is a conglomeration as originally

implemented. The functions it does are reading network events, testing them against players,

model switching, and maintaining a current list of local/remote simulation entities. Much of this

work is done using a subdivision technique as discussed in Chapter 6. A better version of this

class is needed which farms the processing out to the appropriate players and to an event manager

class. This would make the Sim_Entity_Mgr only responsible for maintaining the current

remote/local player list and managing the subdivision of it.

7.4 Geometry Management

ObjectSim still uses a simple scene graph for its players. Most player geometry hangs off of

one pfGroup, which can create long calls for insertion and deletion of players. A better method is

to explore the new Performer 1.2 node types which provide a geometric grid into which

geometry can be placed. This would allow a faster cull and faster intersection tests with the

grid.This would be a part of the Pfmr_Renderer class, and also might involve the Terrain class in

Page 95

determining the grid. Also, an application can create its own scene graph structure to manage its

own partitioning of the player geometry. No work was done on optimizing the geometry

organization.

ObjectSim right now has no abstract support for intersecting a segment with the player list.

Applications must iterate through the list testing their vector against each player's geometry.

Again, a better method would be to write an abstraction which would quickly give back a player

id based on a segment, using the fastest method if intersection testing it could implement. This

would probably be best implemented as part of the Pfrar_Renderer class, since this class is

responsible for the player list.

7.5 Future Enhancements

ObjectSim now provides a platform of many reusable pieces which could make future

simulations easy to implement. We have already created a reusable Performer simulation which

can be instantiated many ways. In this section I will present some of the ways I think the

architecture could be extended, and larger reusable pieces captured into it.

The Terrain class should be extended to implement terrain that does not come from a Flight

file. It should give the developer the option to read in DTED data or other elevation formats and

create the terrain database on the fly. The cultural features aspect of terrain should be made

available as an abstraction.

The SBB interfaced ObjectSim to the FakeSpace Boom. The Virtual Cockpit interfaced

ObjectSim to a set of Barco projectors and to a Head-Mounted Display These various view

configurations should be captured into classes and provided as standard functionality to a

simulation developer. The associated modifiers (Boom movement or Head Trackers or

Page 96

calibration keysüor :ould then be made a part of these classes, and each application could

merely create an cKj^. jf the appropriate type and ran in various modes.

More Modifiers should be created to provide easier interfaces. A Modifier class which takes

the viewpoint and moves around a point based on a radius should be created. This class should

use an Attachable_Player as the look point, and provide the appropriate offset and view direction

to move the viewer around the Attachable_Pl.ayer the view is attached to. Other Modifiers to use

standard Forms or the SBB's buttons should be implemented and made available as standard

pieces.

The network interface we have used is not reusable. Right now, each applications has a

method which returns the network status based on its requirements. A better solution is to

incorporate a DIS translation capability into ObjectSim as a part of the Base_Net_Remote_Player

class. Then, the task reading the PDU buffer could call the appropriate object with the PDU and

let that object handle the translation into the player data structure. Then, if a player subclass

required the ability to override the default PDU processing, it could see the incoming PDUs and

handle them as appropriate, before passing them on for default processing.

The send network interface should be similarly handled. A Base_Net_Send_Player class

should be created, with the responsibility of building and sending a PDU when the application is

ready to send one. This class could have the knowledge to interface to the send daemons, and

provide a standard method to configure the outgoing PDU from information in the default player

structure. Then, if the application's player needed to specially configure the PDU before sending

it, the player could modify the PDU before actually releasing it to the network.

Page 97

The network interface also needs to model the incoming entities with more precision. The

current interface does not handle articulated parts, fire, appearance management beyond damage,

smoke, plumes, and other DIS appearance fields. This management could be added into the

Base_Net_Player or new Base_Net_Remote_Player class as capability in th- propagate^eriodic

call, which does appearance management.

The simulation class itself could have functionality added to reuse the work of configuring the

simulation. A standard method could be written to parse the command line and instantiate the

proper objects as necessary, based on the requested configuration. Then, the main programs

could all share much of the same code for configuring the simulation for different modes or

viewing devices.

This thesis didn't define tne reusable display objects I once envisioned. Although the Virtual

Cockpit did some work in this area, this remains a fruitful area for expansion. The SBB did create

a reusable class of buttons which made its way into the library, as did the stroke vector classes

from Wright Labs. The Pfmr_Renderer class gave some functionality for drawing in or over the

scene, but was limited to mode changes for the drawing pipeline. A true class of reusable display

objects, such as dials, guages, MFDs, etc., would make even quicker and better simulations

possible.

For a full term thesis effort, much of the work involved in building these simulations could be

done with a tool Rather than writing code from scratch, the programmer could sit down with a

tool and build a description of his simulation design. Thcs might include the type of terrain

desired, the viewing modes desired, the device interfaces needed, whether or not a DIS interface

was required, and individual or coUector classes of players. The tool could generate an ObjectSim

Page 98

template which required the programmer to fill in the implementations for the players. Then, the

tool could automate the process of building a makefile and creating the actual executable. Finally,

this tool could allow the developer to link in the proper models or directories to help specify the

model lists, model managers, etc. needed for the simulation to function.

Another avenue of research for this architecture is to explore implementing the architecture in

Ada or Ada9X. This rese: .ch has indicated that traditional bugaboos about object oriented design

and C++ may not be as important ao once thought in determining frame rate. Certainly AFIT has

several successful visual simulations with fully object oriented designs. A researcher with a good

knowledge about performance issues in visual simulation could show similar conclusions about

boftware written in Ada or Ada9X.

An Ada9X implementation of ObjectSim would provide a good test of the new object oriented

extensions to the Ada language. The cornerstone of ObjectSim is extensibihty through

inheritance, an exclusive feature of object oriented languages. To successfully implement

ObjectSim or a similar model in Ada9X would provide a good test of the new language.

ObjectSim currently is dependent on the SGI platform and the Performer library. To make the

architecture platform independent would require a tree-based rendering abstraction similar to the

Performer tree. Many of the areas where the architectuie takes advantage of the Performer

features could have been implemented without Performer, at a cost of increased development

time. This would also be a good goal for future research on the architecture.

7.6 DISatAFIT

AFIT now has several DIS apphcations which use ObjectSim. AFIT has the capability to put a

Virtual Cockpit into the DIS environment. AFIT can also put satellites and a Red Flag exercise

Page 99

onto the network. The SBB is a highly capable stealth viewer which can i uu In several modes,

and the RDT is an impressive console for Red Flag exercise data. The Graphics Lab is a

multi-mode DIS testbed, with the capability to rapidly develop additional DIS simulations using

ObjectSim and Performer.

With ObjectSim and Performer, and especially with a fully integrated and reusable network

interface, the Graphics U hould have the ability now to reduce the development cycle for DIS

simulation applications significantly. A simulation which a year ago would have been a

two-month project should now just take two weeks. I believe AFIT has a unique and powerful

capability in this respect, and I believe the concept of an object oriented application framework is

central to this capability being available.

The Graphics Lab should now be able to support the overall goals of the Warbreaker program

- to explore the use of large-scale distributed interactive simulation for weapons analysis, training,

and combat simulation. The projects are ready for the next stage - integrating the simulations

with a larger simulated wartime environment. One possibihty is to include simulating the Global

Positioning System constellation and using the simulated positions to navigate the Virtual

Cockpit. Another interesting project would be to create some manned or E3mi-manned threats in

the environment and to take a Virtual Cockpit mission ?.gainst the threats to test mission planning

or simulated weapons effectiveness. I believe the logical next step is to begin integrating the

AFIT simulations into the larger picture of the DIS future in the military. ObjectSim should

provide a fine tool for the process.

Page BD

References
L)oD92 Ada9X Project Report.. Office of the Under Secretary of Defense for Acquisition,

Washington DC, 1992

Big89 Biggerstaff, Ted and Richter, Reusability Framework. Assessment, and Directions

Cur88 Curtis, Bill, Comitive Issues in Reusing Software Artifacts

Bru91 Brunderman, John A. Design and Application of an Obiect Oriented Graphical
Databa?? Management System for Synthetic Environments. MS thesis
AFIT/GA/ENG/ 91D-01. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991.

SG92 Silicon Graphics. Iris Performer Programmer's Gnidp. Mountain View, CA: Silicon
Graphics, Inc. 1992.

SS93

Rum91

Software Systems. Multisen Modelers Guide. Software Systems, Inc, 1993

Rumbaugh, James, and others. Obiect Oriented Modeling and Design Englewood
Cüffs, NJ: Prentice HaU, .1991

DIp89 D'Ippolito, Richard S. Using Models in Software Engineering. Software
Engineering Institute. Pittsburgh: Carnegie Mellon University, 1989.

JMASS92 J-MASS Architectural Technical Working Group. Software Structural Model
Design Methodology fot the Modeling Library Components of the Joint Modeling
and Simulation System ri-MASS) Program. J-MASS Program Office, Wright
Patterson Air Force Base, OH, 1992

SPC91 Software Productivity Consortium. Ada Quality and Style. Guidelines for
Professional Programmers. Herndon, VA: Software Productivity Consortium
1991.

Laf91 Lafore, Robert. Obiect Oriented Programming in Turbo C++ Mill Valley, CA:
The Waite Group Press, 1991.

Lowry91 Lowry, Michael R. Automatic Software Design. MIT Press, 1991

Bha92 Bhansali, K., and Nii, H. Penny, "Software Synthesis Using Generic
Architectures", Knowledge Systems Laboratory, Stanford University, 1992

Wie92 Wiederhold, Gio and others, "Toward Megaprogramming: A Paradigm for
Component Based Programming", Computer Science Departrasrit, Stanford
University, 1992

Str91 Stroustrup. Bjarne. The C+ <- Programming Language 2nd Ed. Addison-Wesley,
1991

Harel92 Harel, David, "Biting the Silver Bullet - Toward a Brighter Future for Systems
Development", IEEE Computer. January, 1992

Bor92 Borland., ObjectWindows for C++ Borland, Inc. 1992

DIp91 DIppolito, Richard and others Model Based Software Development. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1991

Rum91 Rumbaugh, James and others, Object Oriented Modeling and Design Prentice
Hall, 1991.

APPENDIX A

ObjectSim
Application
Developers

Manual

1. Introduction 1
1.1. Visual Simulation 1

1.2. Reusing existing work -I

1.3. Iris Performer Overview 2
1.4. ObjectSim 4

1.5. What's in this Manual 4

2. Learning ObjectSim 7
2.1. Object Oriented Performer Applications 7
2.2. ObjectSim Environment 7

2.3. ObjectSim Design Overview 8
2.4. Using The Tutorials 9
2.5. Hello World 9

2.6. Adding Moving Objects 13

3. ObjectSim Input Management 17
3.1. Input Methods 17

3.2. Shared Memory 17

3.3. Modifiers 19

3.4. Event Handling Approaches 19
3.5. Other Device Interfaces 22
3.6. Forms 23

4. ObjectSim Drawing and Graphics 27
4.1. Drawing Requirements in a Visual Simulation 27
4.2. Drawing Examples 27

4.3. ObjectSim Scene Graph 31
4.4. Inserting Geometry 32

4.5. Multiple Channel Simulations 34

5. ObjectSim DIS Simulations 39
5.1. DIS Overview 39

5.2. ObjectSim and DIS 40

5.3. Round Earth 41

6. Class Reference 43
6.1. Class Simulation 43

6.2. Class View 44

6.3. Class Player 46

6.4. Class Attachable_Player: public Player 47
6.5. Class Flt_Moclel 47
6.6. Class Pfmr_Renderer 48
6.7. Class Terrain 50

6.8. Class Simple_Terrain : public Terrain 51
6.9. Class Modifier 51

6.10. Modifier Classes 52

6.11. DIS Classes 53

1 Introduction

1.1 Visual Simulation

Visual simulation is an area with diverse and complex software requirements. A
simulation might be immersive, involving HMDs and head tracking, or console
based, with a complex user interface. Typically, software written to implement
simulations must solve problems of interfacing to various devices, rendering the
simulation scene, interacting with other simulators, and correctly processing and
displaying the user's view based on all of these factors.

Some representative types of visual simulations include platform simulations, in
which the user operates a simulated platform, such as a helicopter or airplane, and
stealth simulatons, which provide capabilities for the user to view a scene and
observe movement of entities without interacting with them. Though the two
types of simulation have different requirements, they have much basic capability in
common.

V/ben a simulator interacts with other simulators, it must have the capability to
send and/or receive a network interface protocol. This allows a simulation to be
compatible with other simulations which 'speak the same language'. For visual
simulations in the military world, common protocols include DJS and SIMNET.

Taken together, all of these requirements make for a daunting software task. The
next section will examine some approaches to solving this complexity problem to
allow for shorter development times.

1.2 Reusing existing work

Visual simulation developers often try to reuse work. Software like network
interfaces, device interfaces, and other work is often reused. One of the common
problems with reuse is the difficulty of making reusable software interface with
other reusable software. For instance, consider the definitions below:

typedef struct
{

x: float;
y: float;
z: float;

} Position;

class Network Enti
I
Position* getjpos^ -a» ();

};

A-l

typedef float[3] Vec3;

void Set_Draw_Position(VecS Drawpos);

Now, to set the drawing position to render the entity, the developer has to convert
from the Position structure to the Vec3 array to accomplish the task. This
assumes, of course, that the coordinate systems for the entity and the rendering are
in synch. If the network interface was developed separate from the rendering
library, the developer of the simulation has no choice but to convert from one
format to the other, or to reimplement the functionality to get around the problem.
In designing a large system (and attempting to reuse functionality), these types of
interface problems can multiply.

High level languages like C-H- were invented to solve problems like this by
allowing abstract data structures which provide constructs to manage complexity.
However, a quick survey of some simulation code will reveal that complexity ir
reduced, but not much. Too often, C++ is just used as a more capable C, and not
as a high level language with its powerful features.

1.3 Iris Performer Overview

Recently, Silicon Graphics, Inc. (SGI) has attempted to solve some of the
complexity associated with developing visual simulations with their Performer
library. This library is an effort to create a standard library for visual simulation.
This section provides an overview, but the Performer Programmer's Manual is
recommended for a more in-depth view of the library.

Performer is a library of C callable routines that create a new interface to the SGI
graphics pipeline. This interface improves vastly on the Graphics Library (GL)
interface in many areas. While GL provides a good low-level interface to
rendering polygons. Performer adds a higher level of library routines for managing
an entire visual simulation. This library abstracts many of the chores associated
with programming the SGI, and captures much of the SGI expertise about
programming their pipeline. In addition. Performer provides an easy upgrade to
the RealityEngine platform from the VGXT, because the library hides much of the
details of rendering geometry and the same Performer interface is used on the new
machines.

Performer maintains an internal geometry tree. This tree holds many of the
common types of geometry used on the SGI. Geometry nodes, or geodes, can
hold polygons, triangle mesh, light points, and many other types of primitives.
These geodes are the leaves in the geometry tree. The tree also holds information

A-2

like level of detail switching nodes, animation nodes, coordinate systems, group
nodes, and instance nodes, all of which are intermediate nodes providing the
capability for stored maniputations of the geometry in the tree. In effect, the tree
allows the programmer to specify behavior or groupings of the geometry with the
intermediate nodes.

Since the geometry tree is not dependent on a particular external geometry format,
any format which can be converted to the Performer internal geometry format can
be converted and placed in the tree. This conversion is done through file reader
routines (figure 1). Performer comes with a Multigen flight (.fit) format reader, a
reader for '.sgi' format geometry, and a reader for '.bin' format geometry. The
flight reader allows all of the power and hierarchy expression available with the
Multigen modeling tool to be seamlessly used in Performer applications with
minimal effort.

r ■fit i reader
^ J

^

.fit .fit

Internal
Geometry Tree

Figure 1 - Format independent operation with Performer

Performer also maintains state information in the tree. These nodes, called
geostates, hold information like materials, textures, transparency, lighting
conditions, and other information normally part of the GL state. This allows
Performer to easily handle multiple textures, transparency, etc, through its built in
state management features. Geostates are placed in the tree and apply to geometry
under the geostate in the tree.

Performer renders its geometry tree very efficiendy. According to Silicon
Graphics, Performer maximizes frame rates for the Silicon Graphics geometry
pipeline. This indicates the limiting factors for efficiently rendering a set of
geometry are dependent on geometry and scene management, not on rendering
code efficiency, when Performer is used.

Another performance breakthrough in Performer is obtained through its
multiprocess management features. Performer provides an abstract, easy to use
model for using three processors on a four processor machine. This model
dedicates one processor to the drawing, one to culling, and one to the application
managing the scene. This feature is also extensible to machines with more than

A-3

one rendering pipeline. The multiprocess management features will manage the
creation of separate cull and draw processes for each pipeline in the simulation.

Other features in Performer include multiple channels (viewports) into a scene, an
easy to use viewing model, and an extensive math library. Performer has built in
collision detection features, intersection testing, and special effects processing
(clouds, haze, time of day, earth-sky, etc).

1.4 ObjectSim

Though Performer does provide a higher level interface to build visual simulations,
much more work is necessary to write the software for one. Performer does not
provide for standard device interfaces, network interfacing, complex view
management, and other high level simulation requirements. Performer, as a
powerful rendering library, requires expertise to successfully use. The Performer
manual lists hundreds of Performer calls provided in the library. To manage this
complexity, another level of encapsulation is needed.

ObjectSim helps manage the complexity problem by pre viding a se ies of high
level simulation objects which interact to provide simulation funct'onality needed
in a visual simulation application. Figure 2 shows some typical requirements found
in visual simulation apphcations and support provided by ObjectSim to satisfy
them.

ObjectSim provides ease of development for Performer simulations by:

♦ Encapsulating and abstracting these high level simulation capabilities with
C-H- classes.

♦ Providing the basic framework and design for a visual simulation
♦ Providing abstract classes which enforce interfaces between ObjectSim

components

A simulation gains access to the ObjectSim functionality in two ways - by
inheriting capability and by using Object instances which provide capability. The
library does not provide everything needed to create a simulation, but it does give
a good head start in getting a simulation running quickly with a proven design and
with a small amount of code to maintain.

1.5 What's in this Manual

Because ObjectSim is an application framework and provides a different method
for developing simulations, this manual contains a lot of explanation and examples.
It has several chapters:

♦ Chapter 2, Learning ObjectSim gives a discussion of principles of writing a
Performer simulation and includes a tutorial which will walk through some
simple ObjectSim applications.

♦ Chapter 3, ObjectSim Input Management introduces the constructs for
handüng device and user input in ObjectSim, and presents some strategies

A-4

for managing user input from the keyboard or from a GUI package such as
Forms.

♦ Chapter 4, ObjectSim Drawing and Graphics presents ObjectSim and
Performer techniques for drawing text, graphics, and objects into the scene
and overlaying the scene.

♦ Chapter 5, ObjectSim DIS Simulations presents some classes and
ObjectSim constructs for managing the unique requirements for a DIS
compatible simulation.

♦ Chapter 6, ObjectSim Reference and Customization includes design
information and a class reference for the ObjectSim capabiüties. Also
included is a list of simulation requirements ObjectSim can be expected to
aid with, with an indication of how to approach them.

ObjectSim and this manual will not provide everything you need to begin writing
simulations. This manual does not:

♦ Provide extensive background on C++. For a good introduction, read
(LaFor92) or another good reference.

♦ Provide complete Performer understanding. Read the Performer
Programmer's Manual for this.

♦ Provide GL or GL windowing background. Read man pages or SGI
relevant documentation.

Compatible interfacing for devices
n~r\

ld:A10
Pos: 123. 123, 123

f Spacebail Mouse Keyboard

Text on screen

instancing of multiple models
Viewer

View class can be -
- Attached to a model
- Tied to own motion code
- Changed by device input

Multiple views into same scene
ipl© viewports and windqyrc

Entity driven by network.

Figure 2 - ObjectSim High Level Simulation Support

Terrain with:
|. -LCDs
\ -Cultural Feature

-Jitter removal

A-5

For this manual, a boldface class name indicates a class whose entry can be found
in the class reference (Chapter 6) Code notes are found in the left margin.

A-6

2 Learning ObjectSim

2.1 Object Oriented Performer Applications

ObjectSim provides an Object Oriented interface into the Performer rendering
library. This reduces greatly the amount of complexity a simulation developer
needs to master before beginning to write visual simulation applications.
ObjectSim follows the Performer three-process callback model to allow an
application to split up its processing into three parts in an intuitive way. It
manages much of the complexity of using Performer's process callbacks, giving the
developer an intuitive interface into the objects which perform the simulations
functionality. The objects hide the details of channel management, terrain and
model instancing, view management, terrain translation, and the simulation inner
loop, providing a standard method for implementing the specific functionality that
makes each simulation unique.

Another benefit of this object oriented approach is the ability to create ObjectSim
objects which are reusable across simulation projects. With just a little extra
effort, ObjectSim objects can be developed as separate, reusable software pieces
which can be 'plugged' in where needed to build different applications.

2.2 ObjectSim Environment

ObjectSim is built on top of the Iris Performer library. To compile and run with
ObjectSim, the machine must have Performer installed. Also certain ObjectSim
classes are designed to work with certain devices or network software. These
dependencies are spelled out in Chapter 6.

A typical ObjectSim development environment is organized by first setting up a
directory for the ObjectSim work. Then, the ObjectSim 'include' directories and
'lib' directories are referenced in a makefile for your simulation, along with the
Performer libraries and other standard libraries. The example programs found in
theObjectSim/examples/pguide directory contain sample makefile for
ObjectSim applications.

Geometry files are another dependency of all visual simulations. Some
simulations, notably those which receive and display network entities, need access
to hundreds of geometry files which will represent the entities. ObjectSim
provides the Model_Mgr class for managing an extensive geometry context such
as this. The example programs illustrate a method using a header file for simpler
geometry dependencies. A good tip to remember is that if a program may change
dependencies from time to time (change geometry files), either use the
Model_Mgr flat file method for listing the geometry files, or use Unix symbolic
links, which can be easily changed to point the application to different geometry.

A-7

2.3 ObjectSim Design Overview

This section provides a brief high level overview of the basic design of each
ObjectSim program. In Chapter 6, this manual provides complete class reference
information.

The design is shown in a simplified object model fonnat in Figure 3. It is intended
to show how the various objects are put together to form a working simulation.

Simulation Class
- Superclass for application
- Viewpoint user interface
- Executive simulation control

Pfmr_Renderer Class
- Executive control
- Common geometry list
- Graphics/Window management
- Multiprocess management

<> ■a

Terrain Class
- Sun, time of day mgmt
- Sky and ground
- Features in world
- Placement of world on globe

n^—_

View Class
- Viewpoint calculations
- Multiple WindowA/iewpoint
channel management

0,1
Changes

Modifier Class
- Template for certain
device interfaces

- Trackers / Spaceball

Player
- Superclass for sim entities
- Inherited classes create

useful subclasses, like
- Network Player

- Stealth View Player

represents
Fit.Mode! Class
- Geometry representation
for Players

- Manages instances of
geometry

Key

O Consists of
Optional Relation (0 or 1)
O Mandatory Relation (At least 1)

Figure 3 - ObjectSim High Level Diagram

Each simulation written using ObjectSim will use instances of the above objects or
subclasses of the above objects. Therefore, each ObjectSim simulation will inherit
the basic design, and code written to interface to the design can be used with other
simulations. Each class is documented in Chapter 6.

A-8

2.4 Using The Tutorials

The remainder of this chapter and chapters 3-5 contain tutorial stype examples of
ObjectSim applications. The examples come from the examples/pguide
directory under the ObjectSim directory on the machine. Consult the system
management personnel for information as to where the software is installed.

To do the tutorials, copy the entire pguide directory and all of its subdirectories
into a personal location. Edit the Makefiles to point to the location of the include
and library files for ObjectSim. Then, compile and run the examples or
experiment with them. They can also be used as templates to build visual
simulation applications, if desired.

The example simulation appücations will use more classes than discussed above in
the overview diagram of ObjectSim. The discussion will explain the class being
used and why, but for complete class information, use the Chapter 6 reference
entry for the pai ticular class.

2.5 Helle World

This section will introduce the most basic ObjectSim simulation. This simulation
will place the viewer in an upright position viewing a terrain patch. As the basic
pieces are completed, this guide will show how to add functionality to the
simulation using ObjectSim. The code for this example is in the exl directory.

The first step is to include the objects and abstract class headers. For the basic
simulation, we need tH following includes:

// Performer includes
#include <pf.h>

These files are found in
the

// ObjectSim classes
„ ,, #include "pfmr renderer.h"
/Ob,edS.m/mclude #include "attachable_player.h"

directory or the #include "view.h" ^
ObjectS.m mstalled #include ,.siinple terrain.ht,
software «include "simulation.h"

Attachable_Player is a subclass of Player which provides necessary members for
a view to be attached to the player. View attachment will be discussed below.
Simple_Terrain is a subclass of Terrain which implements a terrain patch which
is a single file.

Now that the program has the proper files included, we can declare some classes
to perform our simulation. Each simulation must declare a class derived from the
Simulation class which spells out the requirements for a simulation. For this
example, we will declare the following subclass:

A-9

Tk« :.,:♦ «™ „„w class Test Sim : public Simulation I ne init_sim and , —
propagate members public •
are called by the
Pfmr_Rendererto Test Sim: :Test

control the simulate. void-init_sim (7;
o.«»uu m -j * void Propagate (int& exit flag); Stealth.Player defined stealth Pla # stealth;
below View* MyView;

};

Keep in mind that the Test_Sim class also has members it inherited from the
Simulation superclass (see Chapter 6). Therefore, the member functions init_sim
and propagate can refer to any of these. The constructor is defined as follows:

Test_Sim: :Test_Sim()
{
Ter = new Siinple_Terrain() ;

Renderobj = new Pfmr_Renderer() ;

MyView = new View();

Stealth = new Stealth_Player() ;

// These must be done for one of the players
// only. They are static data members
Stealth->terrain = Ter;
Stealth->Renderer = Renderobj;

// Also done for only one view
MyView->Renderobj = Renderobj;
// Called on each view
MyView->alloc_shared();

}

The constructor for Test_Sim has 'made' the basic set of objects which comprise
the simulation. The Renderobj, defined in the superclass, is a Pfmr_Renderer. It
controls the simulation's inner loop, handling calls from Performer to distribute
processing to the application, cull, and draw processes. The MyView object is a
View, which encapsulates one channel, or viewport, into the simulation. This
simulation has declared its Ter object (class Terrain) as an instance of the
Simple_Terrain subclass. Also, this simulation will contain one player, the
Stealth object, defined below.

Next, is the implementations for the init_sim member function of Test. Sim. This
function is called one time, after the Renderobj is ready for additions to its
geometry tree and for viewing channels to be defined. This method is called after
the standard Performer multiprocess fork, and before the simulation loop is kicked

A-10

off. Therefore, this function is called on thi application process, and one time
application process functionaüty should be done here.

void Test_Sim: :init_sini()
{
int found;

Notice the application
is expecting the terrain
(or a symbolic link to it)
to be in the same
directory as the
executable with the
name terrain.flt

// Read the terrain file and place in
// Flt_Model number one
Ter->readmodel("terrain.fit",1,found) ;

// Initialize the player functionality here
Stealth->init();

//A new view on pipe 0
MyView->new_view(0);

// Connect this view to the stealth player
MyView->attach_tojplayer(Stealth) ;

}

The only remaining function to be defined is the propagate function for the
Test_Sim. This member is called once per frame on the application thread before
any views are set or drawing is performed. Its function is to call any players or
other objects which need to perform processing once per frame.

void Test_Sim::propagate(int& exitflag)
{

// This call will propagate the attached
// player regardless of which player is
// currently attached to the view.
MyView->get_attached()->propagate();

The Simulation subclass each application declares is the controller for the
simulation. It defines the structure of the application and the objects which
comprise it. Most of the simulation's functionaüty is provided by instances of the
class called Player and its subclass caUed Attachable.Player. Players are entities
which are in the simulation. They may be controlled by the simulation, by a
network interface, or by the user. They may or may not have any 3D
representation in the scene. The next section will declare the Stealth_Player,
whose job will be to manage a viewpoint into the simulation:

class Stealth_ Player : public Attachable_Player

The init and propagate
functions are abstract
in the superclass

{
public:
Stealth_Player();

};

void init();
void propagate(){};

A-ll

Stealth_Player::Stealth Player()
{
//Location, Orientation member
Coords = new pfCoord;

}

void Stealth_P]ayer::init ()
{

// Set initial position and orientation
PFSET_VEC3(Coords->xyz, O.Of, -300.Of, 100.Of);
PFSET_VE03(Coords->hpr, O.Of, O.Of, O.Of);

// These are for an attachable player. They
// define a position and orientation within
// the object where an attached viewer is placed
PrSET_VEC3(base offst, O.Of, O.Of, O.Of);
PFSET_VEC3(base^rot, O.Of, O.Of, O.Of);

Now all of the class methods are declared. The last part of this simple simulation
is the main program. The main program in an ObjectSim application will knit all of
the Objects together by establishing relationships. The relationships are
implemented by assigning pointers between the objects. All ObjectSim main
programs follow the same basic pattern:

♦ Initialize Performer
♦ Call simulation constructor

♦ Call Pfmr_Renderer::init and Pfmr_Renderer::render to perform
simulation

int main (int arge, char *argv[])
{

// The simulation
Test_Sim* MySim;

// Initialize Performer
pflnit();

MySim = new Test_SimO ;

// Cause the muultithreads to be kicked off and
// Opens the default window
MySim->Renderobj->init (MySim, l,MySim->Ter) ;

// Cause the main loop to execute. Will not
// return
MySim->Renderobj->render();

exit(0);
}

A-12

The 'Hello World' simulation is now complete. To review, this example is a
simulation with two inherited classes, a subclass of Simulation called Test_Sim,
and a subclass of AttachabIe_Player called Stealth_Player. These classes define
the simulations unique behavior. The main program called the Test_Sim
constructor, which created the simulation objects and assigned pointers between
them to establish relationships. Then, the Pfmr_Renderer object was initialized
and its render method was caUed to perform the simulation. The member functions
of Test_Sim and Stealth_Player perform the unique simulation processing. Run
make to build an executable, and type testsim to view the simulation. The program
will open a standard resizable window and then display the corner of the terrain.

2.6 Adding Moving Objects

These next sections will explore adding various basic functionality to an ObjectSim
application. The code is contained in the ex2 directory. First is a pair of moving
objects.

In ObjectSim, the Player and Attachable.Piayer superclasses are a standard data
structure for holding objects in the simulation. Since the Player class has certain
functionality and required data members, it provides a nice way to ensure all
players have a -ommon look and interface. To implement the moving objects, we
will declare the following (added to our previous simulation):

class Balloon : public Attachable Player
{
public:

Balloon();
void init() ;
void propagate() ;

};

Balloon::Balloon()
{

Coords = new pfCoord();
// This model will have a representation
Model = new Flt_Model();

}

void Balloon::init()
{

int found;

// BALLOON & BALLOON_FILE #defined in 'simjnodels.h'
Model->readmodel(BALLOON_FILE, BALLOON, found);

// This call will configure the RotDCS part of the
// Flt_Model and add the object so it appears in
// the scene
Renderer->insertmodel(Model);

// Define the viewpoint up along the z axis

A-13

PFSET_VEC3(base_offst, 0.0, 0.0, 3.0);
// And looking slightly down
PFSET_VEC3(base_rot, O.Of, -8.0, 0.0);

}

void Balloon::propagate()
{

move_along_heading(4.0);

// Ensure heading is between 0 and 360
Coords->hpr[PF_H] -= 0.5;

if (Coords->hpr[PF_H] < 0.0) Coords->hpr[PF H] =
360.0;

// This call actually changes the DCS so the object
// moves. Moves the geometry in the scene
pfDCSCoord(Modal->RotDCS, Coords);

}

These statements define the moving objects behavior. The model for the objects
is, again, a 'fit' format model. To allow a simple method for specifying and
changing models used in a simulations, a header file with the proper information
to allow the simulation to locate its models can be included. The code below is in
the example directory in the file 'sim_models.h'

#define BALLOON 100
#define BALLOON_FILE "../models/yf22+l_a.fit"

The Flt_Model::readmodel method, called above to read the balloon, performs
instancing. The software will only load one copy of the 'balloon.flt' file, and make
copies of it at different locations if more than one is needed. Below, the players
are initialized so we can watch them fly. The changes are made to the 'Test_Sim'
class member functions as follows;

class Test_Sim , . .

Balloon* Bal[2];

Test_Sim: : Test_Sim ()

Bal[0] = new Balloon();
Bal[l] = new Balloon();

void Test_Sim: :ini.t_sim() ...
{

//Initialize each balloon
Bal[0]->init();
Bal[l]->init();

// Set their positions to be two points on a circle
// And their directions so one will follow the other

A-14

// around a spiral.
PFSET_VEC3

(Bal[0]->Coords->xy2, 3005.Of, 3030.Of, 105.Of);
PFSET_VEC3

(Bal[0]->Coords->hpr, 356.Of, 15.Of, 15.0f);
PFSET_VEC3

(Bal[l]->Coords->hpr, O.Of, 15.Of, 15.0f);
PFSET_VEC3

{Bal[l]->Coords->xyz, 3000.Of, 3000.Of, 100.Of);

The next step in this example will show how to switch between players. The
stealth player will get the added capability to look at a point (the front moving
object). To do this, we give the Stealth_Player a pointer to any
Attachable_Player so we can tell it where to look. The we add the code to lock
at the player. We no longer just null the propagate member, and call a standard
Player member function to orient the player toward a point:

class Stealth_Player ...

void propagate() ;
Attachable_Player* Look Player;

void Stealth_Player::init()

// Set initial position and orientation
PFSET_VEC3(Coords->xyz, 3000.Of, 2800.Of, 100.Of);

void Stealth_Player::propagate()
{

// Change the hpr to always point toward the
// front balloon
look_at_point(Bal[0].Coords->xyz);

}

Finally, this simulation needs the capability to attach the view to multiple players at
different times. In this way, the user will be able to ride the back balloon or view
both balloons from the stealth player's position. Since we have multiple players,
we won't use the MyView->get_attached()->propagate, but will explicitly
propagate all players:

void Test_Sim: :propagate(inti exitflag)
{

long buttons;

Bal[0]->propagate() ;
Bal[1]->propagate() ;

Stealth->propagate() ;

A-15

// Read the mouse
buttons = ((getbutton(LEFTMOUSE) ? 0x04 : 0) |

(getbutton(MIDDLEMOUSE) ? 0x02 : 0) |
(getbutton(RIGHTMOUSE) ? 0x01 : 0));

switch (buttons)
{
case 0x04:

MyView->attach_to_player(Stealth);
break;

case 0x02:
MyView->attach_to_player(Bal[1]);

)
}

That concludes the code for this example. To review, the simulation contains two
classes of players (Balloon & Stealth) and three instances of player objects (a
stealth object and a pair of balloons). The simulation moves the balloons around in
a spiral and allows the viewer to switch between 'riding' the back balloon and
viewing from a stealth position.

This chapter introduced the basic "look and feel" of an ObjectSim application. In
the next chapters, this manual vill cover device interfaces, DIS simulations, and
drawing text and graphics into the scene.

A-16

3 ObjectSim Input Management

3.1 Input Methods

In a visual simulation, user input can take several forms. Figure 3-1 presents different
types of interfacing done within various simulations. Within ObjectSim, the class called
Modifier is used to provide a certain amount of device-independent interfacing. This
chapter will show the use of modifiers as well as examples of other types of user input
done within simulations using Performer and ObjectSim.

Tracker

Ö?
Dataglove

Spaceball

i
V

Throttle & Stick

^^mmm

o
o
o

ooo

GUI Toolkit

Immersive Simulations console Simulations

Figure 3-1 - Visual Simulation User Interface Requirements

3.2 Shared Memory

Before the next example, a brief discussion of shared memory in a multiprocessor
apphcation is needed. Shared memory is necessary because all drawing (and some device
input) is performed on the drawing process thread, while the simulation processing is done
on a different thread. Shared memory can be dynamically allocated in a structure or an
entire object can be allocated out of shared memory, if its data members are needed on a
different thread. The key point is that a call to new will allocate the storage for the
object from non-shared storage. In order to allocate the memory out of shared storage,
the class needing to use shared memory can declare the area it is interested in sharing as a
substructure:

// Interface structure for My Player
typedef struct
{
int Current_Mode;
float Speed;

} Shared;

A-17

class My_Player : public Player
(

// Declare my_player's interface structure
Shared* IfStruct;

};

// Declare an object of class My_Player in the
// simulation subclass
class Soine_Sim : public Simulation

Some_Sim() ;
My_Player* TestPlayer;

The other requirement is that the shared memory be allocated before the call which forks
off multiprocessing. The example subprograms show the constructor for the Simulation
subclass being called after pfmitQ and before the Pfmr_Renderer::init call, which
performs the fork. During the constructor, an ObjectSim application could issue a call like
this, which uses the standard Performer arena (very large) for shared memory:

Soine_Sim: : Some_Siin ()

Test_Player = new My_Player () ;
TestPlayer->IfStruct = (Shared*) pfMalloc

(sizeof (Shared), pfGetSharedArena ()) ;

Now the My_piayer class can use the members of it's shared structure on any thread.
This is useful for drawing or interface purposes. All pointers, structures, or variables
needed on two or more threads must be put in a shared memory area before they can be
accessed.

A more clean design is to allocate the entire object out of shared memory, if most or all of
its members are needed over multiple threads. However, if the object is allocated the
above way, problems can result with virtual function calls on the resulting object. Instead,
the following technique works:

class My__Player : public Player
{

My_Player();
// No more shared structure

);

My_Player::My_Player()
{ "

this = (*My_Player) pfMalloc (sizeof (My_Player),
pfGetSharedArena()) ;

}

A-18

Now, when the constructor for My_Player is called, all of its member data will be
allocated from shared memory and used on multiple threads.

Note that these techniques show how to gain multiple process visibility for shared data,
but they do not address protection from shared updates and other issues. Simulations
must handle these potential problems and be aware that their data is being accessed on
multiple threads. A good approach to this is to develop the simulation and introduce
protection as required when multiple update problems begin to occur. Many shared data
accesses will require no special handling, but some may require locking or copying to
prevent undesirable effects, such as partially correct vectors being used in calculations.
Performer provides the pfDataPool functions for declaring and using shared memory
locks.

3.3 Modifiers

Modifier is the class name for an input capability designed to translate or rotate the
viewpoint. As such, modifiers cover such input as head tracking in an immersive
simulation and using the spaceball to turn the viewpoint or move it. Figure 3-2 presents a
conceptual view of the modifier.

In ObjectSim, a modifier represents rotations and translations added into the view
calculation before the view is computed. Modifiers are state-based, which means they are
asked for their current value before each view is computed. In ObjectSim, their is
currently support for head tracking, spaceball modifiers, a keypad modifier, and a mouse
modifier.

Viewpoint

and
direction direction >"

hpr, xyz 2*

Tracker Keypad

QQQ *|Bc

^^ QQQ ^-L
Boom

Modified Viewpoint and direoclion

F
Modifier rotaiiona and transiatione

Mouse

Figure 3-2 Modifier Role In ObjectSim Visual Simulations

3.4 Event Handling Approaches

An important part of visual simulation design is user event handling. This is simply the
method by which the program gets and handles user input. For Silicon Graphics machines,

A-19

often the user input is assigned to the same proccessor as the graphics drawing. Since, in
multiprocessor applications, drawing is often assigned to a different thread than the main
body of simulation, Performer and ObjectSim have built-in ability to assign event
processing to the drawing thread. In ObjectSim, this is accomphshed via methods in the
Simulation and View classes. These methods allow the application to process user
events, perform drawing, and other thread-specific activities. This is typically done for
keyboard input and for input from a GUI, such as Forms.

Example 3 demonstrates the use of keyboard event handling and modifiers 10 assign to the
viewpoint. The first step is to add some #includes and new objects in the Test_Sim
class. We also override two draw thread methods so our application can perform some
functions on the draw thread.:

// View modifier (std device functionality)
#include "mouse mod.h"
#include "nq^keypad_modifier.h"

// For GL device queue
#include <get.h>
^include <gl/device.h>
#include <stdlib.h>
#i iclude <stdio.h>

class Test_Sim .. .

void init_draw_thread{) ;
void pre_draw();

// Modifiers
Modifier* attached_modifier;
Mousa_Mod* MouseMod;
NQ_Keypad_Modifier* KeyMod;

// Input data fields
// Player I'm attached to
Attachable_Player* attached_player;

// Whether input was received
int changed;
int Exitkey;

The next step is to enaole the draw thread processing discussed above. By declaring an
init_draw() method and a pre_draw() method for the Test_Sim class, the application
tells ObjectSim it wants to be called initially on the draw thread and once before any other
draw thread processing each frame. Also, the simulation needs to have its data members
allocated from shared memory so it can use them in the new functions. The new Test_Sim
member functions are:

A-20

Test_Siin: :Test_Siin()
{

// Allocate all members from shared memory
this = (Test_Sim*)pfMalloc(si2eof (Test_Sim) ,

pfGetSharedArena()) ;

KeyMod = new NQ_Keypad_Modifier() ;
KeyMod->init_state();

MouseMod = new Mouse_Mod() ;
changed = 1;

}

void Test_Sim: :init_sim()

MouseMod->init ();
MouseMod->attached_view = MyView;
MouseMod->trans_rate = 0.3;
attached_player = Bal[l];
attached_modifier = MorseMod;
changed = 1;
Exitkey = 0;

void Test_Sim::propagate(inti exitflag)

i f (Exitkey)
exitflag = 1;

if (changed) // Act based on input
{
MyView->attach_to_player(attachedjplayer);
MyView->Delta = attached_modifier;
changed = 0;

}
MouseMod->poll();

void Test_Sim: : init_draw thread ()
{ ~
// Tell the keypad that the standard device
// queue will be feeding events to it
KeyMod->init_extern_read((DEV) (fiqdevice)) ;
KeyMod->tum_rate = 2.0;
KeyMod->trans_rate = 1.0;

// Queue up the keypresses 1 am interested in
qdevice(BKEY)
qdevice(SKEY)
qdevice(MKEY)
qdevice(KKEY)
qdevice(ESCKEY);

)

A-21

void Test_Siin: :pre_ciraw()
{

// Read the standard device queue
while (qtest())

{
// Queue is not empty
short value;
long but = qread(&value) ;
if (value)
{

// Pass the event to the keyboard modifier
KeyMod->handle_event (but) ;
// Handle the event
switch (but)
{

case BKEY:
attached_player = Bal[l];
changed = 1;
break;

case MKEY:
attached_modifier = MouseMod;
changed = 1;
break;

case SKEY:
attached_player = Stealth;
changed = 1;
break;

case KKEY:
attached_modifier = KeyMod;
changed = 1;
KeyMod->reset();
break;

case ESCKEY:
Exitkey = 1;

}
}

}
// Ensure Performer draws to right window
winset (MyView->WindowId);

}

When this example is run, the four keys queued above will allow the user to select both
active modifiers and to switch between the playtvs. This demonstrates how ObjectSim
treats modifiers as standard capability, regardless of the source of the user input. The
above simulation could have used a head tracker to modify the viewpoint instead of the
mouse or keyboard. Having the mouse or keyboard interfaces allows for easy testing of
immersive simulations, without having to hook up all the devices first.

3.5 Other Device Interfaces

Other devices or user inputs, such as throttle and stick, dataglove, GUI, etc, can also be
used in a Performer/ObjectSim simulation. One key is to remember that the device read

A-22

and device state check may or may not be in the same block of code. They may even be
on different process threads. However, the functionality for the device shoulu he
encapsulated within a class, either a reusabls device class or in the object using the kfU.
When designing input capability, the easiest design to use is to maintain a conceptu'u
interface state which the application depends on and make the state independent of urn
source of the particular input. This breaks the connection between \he producer o! tiie
input (the device or input functionality) and the consumer of the input, thf application.
Figure 3 shows instances of this design style.

Figure 3-3 Device Interlace Design in ObjeciSim Simulations

3.6 Forms

Forms is a public domain user interface package which provides a Motif-like interface on
Silicon Graphics machines. It incorporates an interactive forms builder which generates
CC code suitable for compiling. Forms provide a useful capability to build and maintain a
GUI for a simulation running at the console. This section will show how to interface to
Forms in an ObjectSim application. The first step is to identify the relevant interface state
information and design the class member data or structure to hold the input state. This
code is in the ex4 subdirectory. For clarity, the examples now have the Stealth_Player
and Balloon classes declared in separate files.

This example will allow the user to interactively enter the viewpoint for the stealth player.
The code will change in the Test_Sim class members as follows, to use the forms event
handling instead of the device event handling:

void Test_Sim: :init_draw_thread()
{

// Initialize fo.mis
fl_init(>;
// Tell KeyMod to use forms queue instead
KeyMod->init_extem_read((DEV) {&fl_qdevice)) ;

A-23

KeyMod->tum_rate = 2.0;
KeyMod->trans_rate = 1.0;

Stealth->init_extem_reacl((DEV) (&fl_qdevice)) ;

fl_qdevice(BKEY)
fl_qdevice(SKEY)
fl_qdevice(MKEY)
fl_qdevice(KKEY)
fl_qdevice(ESCKEY) ;

}

void Test_Sim: : pre_draw ()
{

FL_OBJECT* Obj;
int form_event = TRUE;

// Causes event queue read and callback invocation
obj = fl_check_forms();

while (obj != NULL)
{
if (obj == FL_EVENT)
I
short value;
long but = fl_qread(&value) ;
if (value)
{
KeyMod->handle_event(but);
// Pass event to stealth also
Stealth->handle_event(but);
switch (but)
{
... Unchanged switch on simulation events

}
}

}
// Get another Forme event
obj = fl_check_forms();

}
// Ensure drawing goes back to Performer window
winset(MyView->WindowId);

}

The stealth player now contains all references to the form, the callback for the form, and
the event which brings the form up. This example has bound a part of its interface to a
particular object, instead of having the entire interface state in one place and visible to all.
The stealth player class definition has the following additions:

class Stealth Player .,.

A-24

// Queurs events this player is interested in
// Assumes forms are initialized
void init_extem_read(void (*qfunc) (long)) ;

// Tests if this player is interested in the curvent
//input event
void handle_event(int EVENT);

And the member functions are defined in the .cc file as follows:

// Forms and the form for this object
// Form created with fdesign tool in file TSTinput.h
// and with callbacks TstOK and TstCancel, with
// creation function 'create_the_test_form',
// and with name of TSTval
extern "C"

{
#include "forms.h"
#include "TSTinput.h" // Generated by tool

}

// This pointer is for the callbacks to access
static StealthJPlayer* ThePlayer;

StealthJPlayor::Stealth_Player()
{

// Could allocate entire player from shared memory
// if needed
Coords = (pfCoord*)pfMalloc(sizeof(pfCoord),

pfGetSharedArena());
ThePlayer = this;

}

void Stealth_Player: :init_extem read
(void {*qfunc)(long) \

{
// Call the function pointer passed in to queue
//My event
(*qfunc)(VKEY);
// Call creation routine
create_the_test_form() ;

}

void Stealth_Player::handle event(int event)
{
if (event == VKEY)

fl_show_form(TSTval, FL_PLACE_CENTER,FALSE,NULL);

A-25

// Callback for the OK button
void TstOK(FL_OBJECT* obj, long item)
{
char* cooristr;

// Read the input and store it
coordstr = fl_get_input(TSTXinput);
ThePlayer->Coords->xyz[PF_X] = atof(coordstr);

coordstr = f l_get_input(TSTYinput);
ThePlayer->Coords->xyz[PFJf] = atof(coordstr);

coordstr = fl_get_input(TSTZinput);
ThePlayer->Coords->xyz[PF_Z] = atof(coordstr);

}
fl_hide form(TSTval);

void TstCancel(FL_OBJECT* obj, long item)
{
fl_hide_form(TSTval);

}

That is all the code needed to put the form into the simulation. The form was created
using the fdesign interface builder and told to have the named functions and callbacks.
The key is that any data needed by the forms must come from shared memory, or be
written by the form to shared memory. This example presented a hierarchical approach to
allocating and using shared memory - by object. It also demonstrated partitioning
development into smaller subpieces to increase maintainability.

The interfacing examples presented here are a basic set of interfacing capabilities. There
are also other interface techniques. The key to managing interface complexity is to assign
the interfaa ' o the appropriate level object in the design and to separate the source of the
input from the ie of the input.

A-26

4 ObjectSim Drawing and Graphics

4.1 Drawing Requirements in a Visual Simulation

So far, the simulation examples in this guide have just used flight format models
for the rendered scene. In a visual simulation, often more types of information is
needed by the user. This information could be textual, symbolic, appear out in the
scene, or could overlay the scene. Figure 4-1 shows some types of drawing output
found commonly in a simulation.

Text drawn in 3d Text overlays scene

\
View: Pt A

<^F15 X:100

USA -t" Y: 200

Z: 100

Plane Status Base
1 MR Dahran

HUD MFD/RADAR
Icons

Dials, Gauges
\

Immersive Simulation

Text in tabular window

Console Simulation

Icons in
overhead
display

Figure 4-1: Visual Simulation Display Requirements

These differing display requirements can be met using varying techniques in
Objectsim/Perfoi-mer applications. This chapter will present an example of doing
these varying types of displays. The section on Performer tree management will
discuss various ways to add geometry into the scene, and will describe the scene
graph ObjectSim uses for its rendering, and how to add to and customize the
scene.

4.2 Drawing Examples

The example in the GX5 directory now contains three player classes used in the
simulation. They are the Stealth_Player, Balloon, and Hyer classes. The
Stealth_Player will show in-scene drawing of text based on the viewpoint.. The
Balloon will show screen overlay drawing of text (or graphics). The Flyer shows
the technique of drawing GL graphics as if they were part of a flt_model by v ^g
callback drawing. As the methods are presented, this manual will discuss i's
usefulness in simulations.

In the Test_Sim class, the changes to add the drawing are small. For a single
channel simulation like ours, an ObjectSim program can just override the

A-27

Simulation: :post_draw() virtual method. The post draw method is called when
the proper tranformations are in place to draw text or graphics out in the scene (or
overlaying the scene). So, the changes:

class Test_Sini . . .

void post_draw();

and, to actually call the player's draw method. The Attachable_Player class
provides an abstract draw function:

void Test_Sim: :post draw()
{

MyView->get_attached()->draw();
}

The only other main program changes are to add in the Flyer and to initialize the
font manager one time for all the players. Note the main simulation could perform
player-independent drawing at the same time it calls players for them to draw.

The Stealth_Player, for its drawing, now overrides the virtual draw() method in
the player class. Also, it performs some drawing initiahzation in its
init_extern_read () method, called already on the draw thread. The changes in
the class definition are:

class Stealth_Player ...

// Draw this players drawing
void draw() ;

The changes in the .cc file are as follows:

// Array for drawing color
float Blue[3];

Stealth_Player::Stealth_Player()

// Now allocate members from shared memory
this = (Stealth_Player*)pfMalloc

(sizeof(Stealth_Player),pfGetSharedArena());

void Stealth_Player: :init_extem_read ...

fmfonthandle t imesFont1;
fmfonthandle timesFontlO;

//Set up drawing
timesFontl = fmfindfont("Times-Roman");
timesFontlO = fmscalefont(timesFontl, 10.0);
// Set font once, could be done each frame
fmsetfont(timesFontlO);

A-28

Blue[0] = O.Of;
Blue[l] ■ O.Of;
Blue[2] = 255.Of;

}

void Stealth_Player::draw()
{

// Set mode for in scene drawing
Renderer->setdrawmode(OVERLAY IN SCENE);

// Set drawing color
RGBcolor(Blue[0], BlueU], Blue [2]);

// Translate by negative viewpoint, since
// Players are drawn relative to viewpoint in
// ObjectSim
cmov(Look_Player->Coords->xyz[PF X] -

Coords->xy2[PF_X],
Look_Player->Coords->xyz[PF Y] -

Coords->xyz[PF_Y],
Look_Player->Coords->xyz[PF_Z] -

Coords->xyz[PF_Z]) ;

charstr("YF-22") ;

}

// Set mode for normal drawing
Renderer->setcLrawmode (NORMAL) ;

This completes the example for in scene drawing. The apphcation can also
perform GL drawing in the scene, using the same idea as the text example given
above. In scene drawing is useful to overlay automatically scaled text over objects
in the scene, such as numbers, identities, and so on.

The Balloon player demonstrates the overlay screen drawing capability. This looks
much the same as the in scene drawing, but appears at a fixed 2D point in the
channel where the drawing is being performed. Ihe initiaüzation code is similar.
The only difference in in the actual draw() method for the player:

void Balloon::draw()
{
char Outstr[10];

Renderer->setdrawmode(OVERLAY SCREEN);

// Set color, font, and viewport
fmsetfont(timesFontlO) ;
RGBcolor(Red[0], Red[l], Red[2]);
ortho2(-0.5, 300 - 0.5,-0.5,300);

A-29

// Print out data
cmov2(10,22);
charstr("X: ");
sprintf(Outstr, "%4.2f", Coords->xy2[PF_X]);
charstr(Outstr);

cmov2(10,16),•
chsrstrC'Y: ");
sprintf(Outstr, "%4.2f", Coords->xy2[PF_Y]);
charstr(Outstr);

cmov2(10,10);
charstr("Z: ");
sprintf(Outstr, "%4.2f", Coords->xyz[PF_2]);
charstr(Outstr);

Renderer->set(irawniode (NORMAL) ;
};

This code draws the player's position in the corner of the screen. This completes
the example. The player could also draw 2D geometry on the screen. The
viewport is always relative to the channel. This example is a single channel
simulation. Below the guide discusses handling multiple channel simulations.

The last drawing example shows callback drawing. With this method, text or
graphics are drawn in the scene as extensions of geometry in the rendering tree.
This is done via a Performer callback assigned to the geometry the simulation
wants to add to. The Flyer includes a rudimentary heads-up display which
demonstrates this technique. The display is drawn using the coordinate system for
the airplane - it is drawn in 'airplane space'. The following code handles the call to
the heads-up display - again done on the draw tlread:

// Typecaster for the draw callback
typedef long (*VPF)(pfTraverser*, void*);

HUD* Hudptr;

// Draw callback for the HUD
long drawfunc(pfTraverser* T, void* d)
{
pfPushState();
pfBasicState();
Hudptr->draw_hud();
pfPopState();
return(0); // Continue traversal

)

void Flyer::init()
{

// Cockpit Drawing — Set up callback
// call drawfunc on root geometry, on draw thread,

A-30

// after drawing the geometry
pfNodeTravFuncs(Model->root,2,

NULL,
(VPF)(Sdrawfunc));

}

void Flyer::init_shared()
{

// Set up the HUD
Hud = new HUD();

Hud->init_shared();
Hud->init();

}

// Assigned pre-fork, so visible on all threads
Hudptr ■ Hud;

The heads-up display object contains code to draw the display. It uses GL
drawing to draw the text and graphics. It also uses a stroke vector text class,
called GraphText, which provides a nice way to do numbers and text which do
not automatically scale. Hence these are good to use in an immersive simulation.

The above examples introduce techniques for augmenting the simulation with text
and graphics. These are all implemented in the ex5 directory. The next section
will introduce the ObjectSim rendering tree, or scene graph, used to place players,
terrain, and additional geometric objects into the visual scene. This next section is
background information and does not have example programs for it.

4.3 ObjectSim Scene Graph

The term scene graph refers to the organization of the geometry in the visual
scene. ObjectSim classes use different parts of the scene graph for different
purposes. The root of a Performer scene graph is the pfScene assigned to the
channel. In ObjectSim, the scene member of the View class holds the root of the
scene graph. Terrain geometry is added as a child of this scene member. Moving
geometry is added to the playerlist member of the Pfmr_Renderer class. The
following diagram shows the relationship of the various ObjectSim classes to the
underlying Performer tree.

A-31

View

playertrans
terraintrans

Rmr_Renderer

players

Player

Model-

RotDCS
root

Figure 4-2 - ObjectSim Scene Graph

In Figure 4-2, the pfDCS nodes attached to the pfScene handle the translation of
the terrain and players to account for 'jitter' removal. ObjectSim translates so the
viewer is always at the origin, and the terrain and any players are translates to
appear in the correct location relative to the \ ewer. For this reason, ObjectSim
players must always attach their flight model RotDCS to the the players member
of the Pfnir_Renderer or to another parent attached to the players member.

Figure 4-3 shows how the viewpoint is computed using this scene graph. This is
shown to help the developer understand the viewing calculation. Keep in mind
that all of the viewpoint computation occurrs automatically, and that the simulation
can maintain player positions without regard to the translations being applied by
the architecture.

4.4 Inserting Geometry

Geometry can be inserted in the rendering tree in a number of ways. This section
will show some typical ways the rendering tree in ObjectSim is used to provide
various effects, such as scaling, adding geometry to players (eg; plane carrying
bombs), animations (eg; explosions), and instancing. Figure 4-4 will show
examples of these various tree configurations.

To scale geometry in a Performer application, a pfDCS node must be inserted
between the FlLModel's RotDCS and root members. This pfDCS node can be
used to scale the model. If the Flt_Model:: RotDCS were used, the coordinates

A-32

used for the models position and orientation would also have the scale applied, and
this is incorrect.

Player with geometry
at x.y.z, with h,p,r

Attachment point for view
(Player; :base_offst)

JZ£ Ä

Geometry Origin
0,0,0 in rendered scene

Geometry - Translated by
-x, -y, -z (View::playertrans)

Terrain - Translated by -x, -y, -z
(View::terraintrans)

View Direction is always
h.p.r of player + fixed rotations
within player + any modifier rotations

Figure 4-3 - ObjectSim Viewpoint calculation

To add geometry to a player, insert a pfSCS as a child of the Flt_Model::root,
and add the geometry underneath. The pfSCS should be used to place the added
geometry in the coordinates of the parent geometry.

Instancing can be used to create multiple copies of geometry in different places.
Simply make the geometry be a child of multiple parents, and it will appear in
multiple places. This is useful for such geometry as bombs, missiles, large
geomatric objects used for visualization, etc. The Flt_Model::readmodel method
automatically intances the geometry, so the simulation only maintains one copy of
the geometry for each type of player (such as the F15 in the example).

A pfSCS can be used to convert models specified in some other coordinate system
to the Performer coordinate system. If this is done, the simulation must take care
to add any additional geometry to the proper level of the tree, so it appears
correctly. If the geometry being added is in the original coordinate system, it
should be added to the original root with the pfSCS set in original coordinate
space. If the geometry is in Performer coordinates, it should be added to the
transformed root at the Performer coordinate offset.

A-33

Player

/

Model
ScaleDCS •

Flt_Model

RotDCS/

root.
(pfGroup j

Flt_Model

RotDCS'
root -

Scaling

Model for
Player 1

Model for
Player 2

Instanced Geometry

Player

^ Model
AddSCS
AddGroup-

Added Geometry

Flt_Model

RotDCS
root

Player

Model
ConvSCS'
Origroot •

Coordinate Conversion

4.5 Multiple Channel Simulations

Multiple channel simulations include any simulation which provides two separate
viewpoints into the scene. Performer supports basic multiple channel simulations
by allowing multiple channels to be opened on one or more rendering pipes (see
Performer Programmers Guide). In ObjectSim, a program can have multiple View
objects attached to one or more players. In this way a simulation can maintain
both an overhead and an in-scene view1 for instance. Also, multiple channels are
used for stereo vision applications, and can be used for multiple pipe rendering,
where a simulation's view is spread across multiple screens.

This example will work as foUows. The simulation will be able to have either two
or three channels. The initial mode will be three channels, all attached to one
player. This is the way multiple screen simulations are done. For the two side
channels, we will use a fixed Modifier to hold the rotations tosteer these
viewpoints to the side:

A-34

class FixedMod : public Modifier
{
public:

FixedMod(pfVec3 Loc, pfVec3 Offsets);

void init(){);
void poll() {},•

);

FixedMod::FixedMod(pfVec3 Loc, pfVecS Offsets)
{
init _state();

PFC0PY_VEC3(State->xyz, Loc);
PFC0PY_VEC3(State->hpr, Offsets) ;

}

Now the simulation can use FixedMod as the Delta for any View. Next, the
simulation needs to declare a subclass of View to handle opening the window and
drawing the overlaying data on a per-channel basis:

class Fixed_View : public View
{

public:
// Override init draw to change window opening
void init_draw();

// Override draw to draw player's drawing
void draw(pfChannel* chan);

FixedMod* Mod;
};

void Fixed_View::init_draw()
{
prefposition(0,1000,200, 700) ;
noborder();
Windowld = winopen("ObjectSim Multi");

}

void Fixed_View::draw(pfChannel* chan)
1

get_attached () ->ciraw () ;
}

Now, Fixed_View will allow the attached_players drawing to be done for
whatever player is attached. Next, the simulation needs three FixedJView objects
to be declared:

A-35

class Test_Siin : oublic Simulation

//No More MyView
// Declare a sot of three
Fixed_View* LeftView;
Fixed._View* MiddleView;
Fixed_View* RightView;

Attachable_Player* attachedj5layer_left;
Attachable_Player* attachedj)layer_right;

// Offset Vectors for grouped views
pfVec3 LeftRots;
pfVec3 RightRots;
pfVec3 NoTrans;

// Viewing mode switch
int dualmode;

The simulation haj three views and can attach to two players at the same time.
The dualmode variable will be used to flag that we want side by side mode. Next,
the constructor and initialization look like:

Test_Sim: :Test_Sim

LeftView = new Fixed_View();
MiddleView = new Fixed_View();
RightView = new Fixed_View();

// Static member for view
LeftView->Renderobj = Renderobj;

// Must call for each view
LeftView->alloc_shared() ;
MiddleView->alloc_shared() ;
RightView->alloc_shared() ;

// Offset vectors for each view
PFSET_VEC3(LeftRots, 45.0, 0.0, 0.0);
PFSET_VEC3(RightRots, -45.0, 0.0, 0.0);
PFSET_VEC3(NoTrans, 0.0, 0.0, 0.0);

//No modifier for middle
LeftView->Mod = new FixedMod(NoTrans, LeftRots);
RightView->Mod = new FixedMod(NoTrans, RightRots);

)

void Test_Sim: :init_sim()

//A new view on pipe 0
LeftView->naw_view(0);

A-36

// M-ddle
Mi :le*, .e\"iäw->nQw ^iewCO);
/, uight
RightViß 4->new view(G);

attached_player_left = Fly;
attachedjDlayer right = Bal[0];
attachedjnodifier = KeyMod;

That completes the setup. The last thing needed is to set the viewports and turn
the views on or off as appropri dte for the viewing mode,

void Test Sim::propagate...

if (changed)
{

// Check for both attached to same
if (Idualmode)
{

// Turn on middle view
Renderobj->toggle_/iew(MiddleView, VIEW ON);

// Attach rotation modifiers
LeftView~>Delta = LeftView->Mod;
RightView->Delta = RightView->Mod;

// Attach all three to player on the left
LeftViow->attach_to_player

(attached_player_left);
MiddleView->attach_to_player

(attached_player_left);
RightVie w->a\;tach_tojplayer

(attached_player_left);

// configure Viewports for side by side
pfChanViewport

(LeftView->chan, 0.0, 0.33, 0.0, 1.0);
pfChanViewport

(MiddleView->chan, 0.33, 0.67, 0.0, 1.0);
pfChanViewport

(RightView->chan, 0.67, 1.0, 0.0, 1.0);

else
{

// Switch off middle view
Renderobj->toggle_view(MiddleView, VIEW OFF);
// Don't attach fixed modifiers, but whatever
// The other modifier is
LeftView->Delta = attached_modifier;
RightView->Delta = NULL;

// Attach to separate players
LeftView->attach_to_player

(attached_player_left);

A-37

RightView->attach_to_player
(attached_player_right) ;

// Set viewports to side-by-side
pfChanViewport

(LeftView->chan, 0.0, 0.50, 0.0, 1.0);
pfChanViewport

(RightView->chan, 0.50, 1.00, 0.0, 1.0);

void Test_Sim: _draw_thread()

f l_qdevice (OKEY) ;
fl_qdevice(DKEY);

void Test_Sim::pre_draw()
• • ■

case OKEY:
dualmode = 0;
changed = 1;
break;

case DKEY:
dualmode = 1;
changed = 1;
break ;

Now the simulation can have two separate viewpoints attached two two different
players or attach three viewpoints to one player. The other changes in ex6 are
administrative

Views can override draw operations in ObjectSim. In this way, a simulation
maintaining multiple viewpoints can assign different drawing to each view
(preferably with a player's draw method). In this way, a multichannel simulation
can overlay different graphics for different channels. This is the only reason to
override a View's draw method.

For specialized copies of geometry across multiple channels, a simulation can use
masks to only allow geometry to be drawn on a particular channel. This, for
instance, can provide view dependent scaling operations, by assigning multiple
copies of geometry to a particular player, masked by channel.

The Performer documentation covers many basics of channels. See the Performer
Programmer's Guide for more information.

An ObjectSim application can be run in different types of GL window. The
View::init_draw() method contains the standard, resizable window opening call.
Only one window is opened per pipe. To open a different size window, declare a
subclass of View and override the init_draw function to open the window. The
View class contains a Windowld member intended to hold the window id of the
opening window.

A-38

5 ObjectSim DIS Simulations

5./ DIS Overview

The simulations presented so far have been all internally generated. The simulation
has generated all entities shown in the scene. In a Distributed Interactive
Simulation (DIS), entities are read over a network link and are involved in the
ongoing simulation. A DIS simulation may be read only, read and send, or send
only. Read only simulations allow the user to internally see players and events
from the network, but not affect or communicate with them in any way. Read and
send simulations allow the user to operate a player or players which broadcast
status and send events, and may also affect other simulators (eg; damage them with
a weapon). A send only simulation does not receive any network traffic, but does
broadcast status of one or more players and possibly events. Figure 5-1 shows
some various modes of operation for DIS simulators.

Netwotk

ion #

4
Send Only Simulation / Network Players

Network Events

DIS PDU Trattic

Simulator
Status
& Events

Network
Players
& Events

Read Only Simulation
Figure 5-1 D(S Simulator Types Read - Send Simulation

A simulator's communication with the network governs the classes required in the
application to manage the interface. The special requirements of DIS also govern
the functionality needed for a simulation, both read and read-send. Table 5-1

A-39

shows some of these requirements and the necessary software functions. The
remainder of the chapter addresses how these requirements are met with a
representative network interface.

DIS Simulation Requirement

Simulators need to show accurate state of
external entities (type, position,
orientation, damage, flaming)

Send simulators can cause events, which
can affect other entities in the simulation

Related Software Responsibility

Simulators will process events in the
simulated world, such as explosions and
weapons fire

Send simulators will change their state
based on external or internal events and
based on the simulations progress

Send simulators will reduce traffic by
limiting updates based on time or position

Receive simulators will show a smooth
entity progression through scene

Software needs functions to position network
entities and reflect their state graphically and
within any other required data or display
structures. Software will map simulated entities
onto correct graphical representation

Software must be able to generate internal
simulation events, broadcast them, and process
them against the entities from the network to
inform those simulators if they are affected

Software will allow events to be graphically
shown from internal sources or over the network

Software will process both external and internal
events against sending simulator(s) and
broadcast and graphically show correct state

Software will not update state until some time or
position threshhold is exceeded

Software will dead-reckon simulation entities
between updates

Table 5-1 - DIS Requirements Breakdown

5.2 ObjectSim and DIS

ObjectSim has a DIS interface built into the library. This interface will manage a
list of remote entities and present them to the simulation. The interface consists of
three parts - the Basic_Net_Manager, which handles reading the PDUs from the
network. The Base_Net_Remote_Player, which accepts PDU updates and models
a network entity, and the Sim_Entity_Controller, which handles events in the
simulation and provides stimuli to the Base_Net_Players to perform certain
functions. The ObjectSim application must declare the Basic_Net_Manager and
the Sim_Entity_Controller, then it will have a network interface with the remote
players being represented.

A-40

Base_Net_Player
Appearance mgmt
Standard DIS Status Data
Periodic propagation

Propagates

S\

Sim_Entity_Controller

Maintains active list
Propagates players each
frame and periodically

Manages Event List

Your_Send
Player

Processes

Base_Net_Remote_Player
Dead-Reckoning
Round_Earth_Conversions
Insertion and Deletion
Extended DIS Status Data
Task callable method for
conversions

Reads

Maintains

Basic_Net_Manager

Buffer_Read and Store in Task
Sends PDUt to Sim Entity Controller
and Base_Net_Remote_Players

Reads

Fig 5-2 - ObjectSim DIS Interface

5J Round Earth

The DIS standard calls for entities to broadcast their position and orientation
relative to a round earth. Since most simulators use a flat earth reference frame
(and Performer is designed for this), The data from these entities must be
converted from the round earth reference into the flat earth reference frame used
by Performer. ObjectSim contains the class Round_Earth_Utilities for this
purpose.

The terrain may also have to undergo a transformation to make it visible correctly
in the simulation. If the terrain is defined in round earth coordinates (as earth skin,
for instance), then it will need to be translated to appear correctly in the flat earth
reference frame.. The transformations used for the terrain will affect the
transformations used to send out information for send simulations. The
Simple_Terrain class provides methods for specifying the type of terrain defined
for the simulation. When the terrain is properly initialized, the

A-41

Round_Earth_Utilities will also be initialized to properly convert ingoing and
outgoing DIS data.

Monitor time/position pnn je; ^
to send PDUs only
when necessary

DIS Coordinates

Convert xyz, hpr to
earth centered coordinates

Sending player/event

Receive PDUs

Dead Reckon for smooth
movement

Convert to local
rendering coordinates

^Represent player/event
appearance

Figure 5-3 - Round Earth DIS Interface

A-42

6 Class Reference
This section provides a class reference for the ObjectSim classes. The reference
information is presented in inheritance order for the various classes. The
description of the class covers assumptions, common usage, problems, and
customizing/extending. The last section cross references the customization and
problem sections to give a reference to these areas.

6.1 Class Simulation

Purpose

This class is superclass for all ObjectSim simulations. It provides abstract member
functions which a simulation must provide and virtual member functions a
simulation must override to assign processing to different threads or times.

Member Functions

imt_siin(): Abstract function. Usually will initialize app thread processing, call
initQ on any players, and any other initialization (but not shared memory
allocation, which must be done before Renderer::initQ). Called by: ObjectSim
(Pfmr_Renderer::init(...)). All applications will override this function.

propagateQ: Abstract function. Called once per frame. Main application thread
processing for application. Usually will call players propagateQ functions,
which update player state and rendering tree if applicable. Any other
processing which affects rendering tree is done here. Input communicated via
shared memory from draw or cull thread is processed on this thread. Called by:
ObjectSim (Pfmr_Renderer::render()) (Main Loop). All applications will
override this function.

alloc_sliared():

init_draw_thread(): Virtual Function. Called as first processing on draw thread.
Used to initialize devices or interfacing requhed on draw thread. Called by:
ObjectSim (Pfmr_Renderer::init, after init_sim()). Application overrides if
needed, otherwise defaults to empty function.

pre_draw(): Virtual function. Called once per frame before rendering the scene
on the draw thread. Use to read or update interfaces on draw thread. Can also
be used to customize graphics state before drawing. If used to read forms, use
winset with the view's Wincowld at end of this function to point rendering at
correct window. CaUed by: ObjectSim (Pfmr_Renderer::render() while drawing
frame in parallel with application). Application overrides if needed, otherwise
defaults to empty function.

A-43

post_draw(): Virtual function. Called once per frame after rendering the scene on
the draw thread. Use to perform GL drawing functions overlaying or in scene.
May reset graphics state before drawing. Called by: ObjectSim
Pfmr_Renderer::render() while drawing frame in parallel with application).
Application overrides if needed, otherwise defaults to empty function.

Notes

Use the draw methods from this class for single channel simulations and for non
channel-specific multichannel simulation processing. Use view class draw methods
for channel specific drawing or graphics processing in multichannel simulations.

6.2 Class View

Purpose

This class encapsulates a single view into the simulation. A view has a channel
where it is rendered, and takes its viewpoint from the player it is attached to. A
views may also have a modifier, which add an additional translation and
orientation into the viewing calculation. The view class holds the reference to the
channel's scene and the DCSs used to translate the scene graph to move the terrain
and players' geometry relative to its viewpoint. A simulation can maintain multiple
views, which allows multiple channel simulations.

Member Functions

setviewQ: Called to perform viewpoint calculation for current frame. Will take
any modifier state and the attached player's state and calculate the viewpoint and
the scene graph's translations to correctly render the frame. Called by: ObjectSim
(Pfmr_Renderer::render() after simulation is propagated, once for each view).
Future subclass could override to set its own view calculation, but must pay
attention to attached player code within here.

new_view(int desired_pipe): Called to initialize a view on the pipe specified.
Opens the channel on the desired pipe and creates the necessary scene graph
elements. Registers this view with the renderer. The first View initialized on each
pipe kicks off the draw thread processing for that pipe. Called by: Application,
during init_sim for each view. Could be overridden for a different scene graph
structure if desired, but has not been explored.

init_draw(): Called to open a window for the view. Calls foregroundQ first to
ensure window open does not force draw thread into background. Default window
is user sized and resizable. Saves Windowld data member on winopen. Called by:
ObjectSim: (View::new_view()) Application may override to open window with
different characteristics (but must save Windowld if it uses it elsewhere);

pre_draw(pfChannel* chan): Override point for pre draw functions specific to
one channel in a multi channel simulation. Used for graphics state changes prior to

A-44

rendering. Called by: ObjectSim (Pfmr_Renderer: :render() once for each view).
Applicat'on may override, defaults to empty function.

draw(pfChannel* chan): Override point for draw functions specific to one
channel in a multi channel simulation. Used for channel drawing after rendering.
Called by: ObjectSim (Pfmr_Renderer::render() once for each view). Apphcation
may override, defaults to empty function.

init_cull, cull: cull thread ovenides, similar to draw overrides. Init_cull not
implemented.

alloc_shared(): Shared allocation for view. Called by: Application for each view
it maintains, during simulation alIoc_shared call.

attach_to_pIayer(atfachable_player* the_player): Used to attach the view to a
player. Attached player defines viewpoint. If the player's Model->root = null, the
player has no geometry attached, or else this method assumes it has attached
geometry and takes appropriate action. Called by: Application. Assumes the
player's Model has been created.

getwindowsize & getwindoworigin: application thread utilities for window
attributes.

attachable_player* get_attached(): Retrieves a pointer to the attached player.
Can be used on any thread. Called by: Apphcation.

pfChannel* chan: Member holds the pfChannel for this view. The application can
use the Performer channel attributes on this member defined to affect cupping
planes, offsets, channel groups, or any other channel manipulations needed. Has
valid value after new_view

Modifier* Delta: Member defines which view modifier is assigned to this view.
Can be null. Set during application processing to define different view
modification.

pfDCS* playertrans: A member (Performer pfDCS*) Used to translate scene
graph for proper view rendering. Adding a group to this will have the effect of
causing that group to be rendered after the main group of players, so long as the
addition is done after new_view for the affected view. This technique is used for
transparent objects.

static Pfmr_Renderer* Renderobj: A pointer to the Pfmr_Renderer. Set by
apphcation in main program for only one view per simulation.

Notes

Views can be used for stereoscopic views or for inset views. Whenever moie than
one channel is used, they share the terrain and the players. If the application needs
multiple copies of geometry on separate channels, the simulation or players can
have multiple copies of geometry, and mask the geometry for each on the
unwanted channels.

A-^

6.3 Class Player

Purpose

This class is used for entities and stealth views in the simulation. Generally, a
simulation will consist of one or more players which implement viewers and
moving objects in the scene. For active entities, the player can be used to
encapsulate the functions of modeling behavior, updating geometry, any drawing
associated with the player, and handling any input required. For stealth views, the
player's can handle moving the view, drawing, and input. For remote DIS entities,
the player can serve as a data structure to hold the entity state in a standard
format.

Member Functions

init(): Abstract function to perform initialization. If a player has geometry, it
should be initialized here. All state initiaüzation is done here. If player is being
used as structure and not an object, this can be null, but some other function
should perform appropriate initialization. Called by: Application (generally during
init_sim()). All players override this function.

propagateO: Abstract function to propagate player through simulation. If a
player has geometry, it should be manipulated with the Flt_Model::RotDCS here.
If player is being used as structure and not an object, this can be null, but some
other function should perform appropriate propagation. Called by: Application
(generally during propagateQ for simulation). All players override this function.

look_at_point(pfYec3 where): Utility function. Takes the coordinate system of
the player and modifies the hpr to orient the positive Y axis of the entity
coordinate system toward the point (where). Called by: Application (in
player::propagate() as needed).

move_along_heading(fioat how far): Utiiiry function, fakes thy coordinavc
system of the player at, mod'fies the xyz to move the player along its heading
vector. Called by: Application (in player: :propagate() as needed).

pfCoord* Coords: Structure contains two pfVec3s, hpr and xyz. This is used to
hold entity's position and orientation. All other parts of program with access to
this player will get position and orientation from this member. Must be allocated
(either with new or from shared memory, if necessary) .\

Flt_Model* Model: Holds the representation for this player in geometric scene, if
any. Used to read in and manipulate the geometry associated with the player.

static Plmr_Renderer* Renderer: Allows all players access to the
Pfmr_Renderer. This is used to enter geometry into the scene, etc. Static, so
application only must set this for one player.

A-46

Notes

Players are normally used in one of two ways: as an active entity dependent on
some behavior model, and as a data structure to hold information about a
simulation entity. When used the second way, the member functions are generally
not used, although they can be (except when the player is allocated from shared
memory, as noted earlier in the guide).

6.4 Class Attachable_Player: public Player

Purpose

Subclass of player used for players which can have views attached. Used for
stealth viewers and other players where the viewer is directly attached to the
player.

Member Functions

drawQ: Virtual function. Perform draw process functionahty for this player.
Player can override this. Called by Application (usually during Simulation or view
draw call).

pfVec3 base_offset: Used to hold an xyz value which represents the viewer's
relative position to the origin of the player. Modifies the view calculation to place
the view correctly. Set in init or propagate.

prvec3 base_rot: Used to hold an hpr value which represents the viewer's relative
orientation within the player. Modifies the view calculation to orient the view
correctly. Set in init or propagate.

Notes

Atta. .;able_i layers are useful for stealth viewers and entities the user controls or
'rides' in the simulation. Multiple players can be attached in multichannel
simulations, which allows for multiple viewpoints into the dadabase.

6.5 Class Flt_Model

Purpose

This class holds p player's representation in the Performer scene. It can also be
used to hold geometry not associated with a player. Encapsulates any
format/Performer loader dependencies into this class.

Member Functions

readmodel(const char* modfile, int modelname, int& found): The modelname
is the integer index into the array used for instancing. If a previous model has been
loaded with that name, this model will not load it again, but instance it..

A-47

Otherwise, calls the flight format loader to read in the geometry using filename.
Found will report the outcome.

readlodmodel(const char* modpath, const char* modfile, int modelname):
Uses a format where the LODs for a model are speciified in a separate file.
Obsolete, and remains for historical purposes.

OrientDISModeKpfSCS* CorrectSCS, pfGroup* DISRoot): Inserts an SCS
into a model to oriient a DIS model, defined with y out the nose and z down, into
the Performer space of x out the nose and z up. Returns a pointer to the original
root and to the SCS used in the correction. If another DIS model (non-oriented) is
added as a child, it should be added to the SCS returned from this.

OrientDISModelO: Inserts an SCS into a mode3 ;o oriient a DIS model, defined
with y out the nose and z down, into the Performer space of x out the nose and z
up. FfFlattens the resulting transformation to improve speed.

pfDCS* RotDCS: Use this DCS in Performer calls to manipulate the geometry.
Also, add children to this, rather than the root, if the child is not a part of each
instance of this geometry (e.g, some geometry only for one copy of the model, not
all copies). When the root is added to this and this added to the
Pfmr_Renderer:.players, the geometry will appear in the scene (provided you use
pfDCSCoord or some other call to set the DCS).

pfGroup* root: The actual geometry.

Notes

Each Flt_Model must be configured before use. The constructor must be called,
followed by pfNewDCS on the DCS. If no geometry is desired, the root can be
left null. Removing and adding the root to the RotDCS will perform a sv/itch
operation to turn the geometry on and off.

6.6 Class Pfmr_Renderer

Purpose

This class encapsulates the main loop and callls from the draw and cull threads
back into an ObjectSim apphcation. It contains the standard draw and cull thread
callbacks, and calls to the simulation, terrain, and view classes to accomplish the
simulation.

Member Functions

init(Simulation* theapp, int numpipes, Terrain* theterrain): Initializes the
renderer. Calls the Simulation: :alloc_shared(), followed by the
Simulation: :init_sim(). Processes are forked after this call. Requests a frame rate
of 60 with tree-run. Can be overridden in init_sim. Called by: Application (after all
the relationships are built in the main program).

A-48

renderO: Executes the main loop for the simulation. Will call
Simulation: :propagate, followed by set_view for each view, and then release the
frame to be drawn. The cull and draw threads will return callbacks inside this
class, which will then invoke the appropriate methods in the Simulation or Views,
as discussed in thise class references.

arbitrate(View* theview, int desired_pipe): Will request a channel on the
desired pipe. Causes the pipeline to be opened if it hasn't already. After this call,
the View::init_draw will be called to open a window. Called by: ObjectSim (by
standard View::new_view()) or by Apphcation, if it overrides the new_view call
(unexplored).

toggle_view(View* theview, int viewmode): Takes a mode of VffiW_ON,
VIEW_OFF, or VIEW_MASKED. VIEW_ON is the default. When VIEW_OFF
is the mode, the Pfmr_Renderer will not call the set_view method and the
pre_draw and draw members of the view. When VIEW_MASKED is the mode,
the Pfmr_Renderer will still call the draw member of the view. VIEW_OFF and
VIEW_MASKED both will not render the scene graph. Called by: Application, to
switch on or off a channel.

setdrawmode(int Mode): Sets the graphics pipeline to either NORMAL,
OVERLAY_SCREEN. or OVERLAY_IN_SCENE. Used by apphcation or view
draw methods (or players) to set the mode for text and graphics drawing.
OVERLAY_SCREEN is for text or graphics in the 2D viewport.
OVERLAY_IN_SCENE is for text and graphics in the 3D scene. Note that
OVERLAY_IN_SCENE drawing must be translated by the negation of the
viewpoint because of the ObjectSim viewpoint convention. Called by: Application,
as discussed above. Application must return the pipeline to NORMAL after
finishing drawing.

insertmodel(FIt_Model* Model): Called to insert a newly read model into the
scene. Will call pfNewDCS for the RotDCS, add the root as a child, and add the
DCS to the players member. Call only when the geometry is to be added to the
players group with no special nodes between the RotDCS and the root. Called by:
Application.

getscenebounds(pffiox* box): gets a bounding box for the players. Selldom
needed or used.

pfGroup* players: A pfGroup used to hold geometry in the scene. Use this to
hold all geometry unless the application requires some geometry to be rendered
after other geometry (see View class).

Notes

This class handles all standard callbacks for the draw and cull threads from
Performer. Your application can run on up to 7 processors, plus any forks you do.
Although it calls member functions in the ObjectSim classes for a nicer interface
into the components of the application, it cannot free the apphcation from using

A-49

shared memory in the Simulation, View, and Player objects to share data across
threads. The best design is to localize shared memory for these objects within the
subclasses you declare, and so preserve the class modularization. This guide has
samples of this technique.

6.7 Class Terrain

Purpose

This class encapsulates the environment the simulation runs in. This includes the
lighting, ground the simulation is over, and the Performer earth-sky model used to
present a background for the simulation. This is an abstract class which is
independent of the format the geometry is in. Therefore, an ObjectSim simulation
can use terrain read in as a model or generated in some way by the application.

Member Functions

configure_channel(pfChannel* chan): abstract function. Called by the
View::new_view() function to configure the View's channel. If the simulation has
multiple viewpoints which share the same earth-sky model, for instance, then a
single configure_channel will configure each view. Called by: ObjectSim
(View: ne w_vie w).

clamp(pfCoord* ClampCoords): Utility method to clamp a set of coordinates to
the terrain. Does not modify the hpr at all, but changes the xyz to equal the terrain
point directly under the x and y of the object. Could be rewritten to also orient the
pitch and roll with the terrain.

init_draw(): Abstract function. Terrain maintains the light source for the sun,
which provides the illumination for a scene. Light sources are maintained on the
draw thread in Performer. This call allows the terrain to initialize its lighting
source. Called by: ObjectSim, when each draw thread is initialized with the first
View:new_view() on a pipe.

drawQ: Abstract function. Called once per frame per channel to allow the terrain
to maintain the lighting and turn it on for a scene. Called by: ObjectSim, during
draw thread functionality for each frame.

Round_Earth_Utils* REU: A pointer to the Round_Earth_Utilities. These
utilities are to be initialized to reflect the position of the terrain on the earth. Once
they are properly initialized, they are used to convert coordinated (See entry for
Round_Earth_Utiiities class).

Notes

This class is intended as a base class for implementation of terrain in ObjectSim. It
reflects the way terrain fits into an ObjectSim simulation. The subclasses will
provide the implementation for the terrain geometry and will specify the lighting
and earth-sky model used to simulate the terrain.

A-50

6.8 Class Simple_Terrain : public Terrain

Purpose

Imlpements the terrain class for the case when terrain is a single flight model. Also
provides base functionality for the lighting, earth-sky, clamping, and round earth
ti^nsformations.

Member Functions

build_terrain(char* filename, int modelindex, double origx, double origy,
double origz): Reads in a single flight file which defines the terrain. The double
precision coordinates define the location of the terrain's origin relative to the center
of the earth. Assumes the terrain is described as earth skin. Orients the terrain to
fit into the Performer earth-sky box and into the local Objects im coordinate
system. Called by : Application (during init_sim() call). Can be overridden.

build_terrain(char* filename, int modelindex, double origx, double origy,
double origz, pfMatrix Terraform): Like previous method except the matrix
provides the transformation which would orient the flight file as earth skin, which
assumes the terrain is not already on the skin of the earth.. In this way, the terrain
can 'pretend' it's defined as earth skin when it isn't. Using this, a simulation can run
over terrain defined in flat earth and send/receive round-earth network traffic.

configure_channel(pfChannel* chan): Provides an implementation for the
abstract configure channel. Creates an earth-sky-ground model with default green
ground plane. Override this to create a custom earth-sky, or directly modify the
eSky member of r' '; class after new_view is called on an initial view. Called by:
ObjectSim (Viev/:new_view()). Can be overridden.

set_sun(pfYec3 ambience, pfVec3 position): Sets the position and color of the
'sun' lightsource to the parameters passed in. Called by: Application (on draw
thread, typically during a Simulaüon::pre_draw call).

Notes

This class also contains basic implementations for the abstract methods of its
parent class. In the initial version, methods implementing a class of static features
have also been used, but these should be removed and put in another class to
manage them.

6.9 Class Modifier

Purpose

Modifiers are used to provide an implementation independent way to interface
devices into the simulation. Modifiers represent devices whch return an offset and
rotations in world coordinates. Views can have modifiers assigned to them, which

A-51

makes the view calculation take into account the modifier's daf.<3 v 'iue. Modifiers
are typically used to represent spaceballs, head trackers, or simiiar devices.

Member Functions

init_state(): Allocates the state (pfCoord which represents the world coordinate
values of the modifier) out of shared memory. Call if modifier must use shared
memory. Called by: Application (in alloc_shared call).

initQ: Abstract function. Each modifier class must define a way to initialize inself
Called by: Application (Either in init_sim() or init_draw(), depending on interface
requirements.

poll(): Abstract Function. Each Modifier must provide a method to poll and get a
new value. Could also write a modifier which operated as an autonomous task.
Application (Either in propagateQ or pre_draw(), depending on interface
requirements.

reset(): Virtual function. Base capability just resets state data to zero. Called by:
Application.

pfCoord* State: Coordinate system defines the current rotations and offsets for
the modifier. This member is used by the View:setview() function to apply the
modifications to the viewpoint.

Notes

When used with the view class, modifiers give offsets and rotations. They can also
be used by players, for instance, to define control inputs, etc. The idea is that the
device state is independent from the device implementation.

6.10 Modifier Classes

NQjModifiers

NQ_Modifiers are inherited from the class NQ_Mociifier. Indtead of reading a
device queue (like the standard GL device queue or a GUI device queue) they
allow another part of the program to handle this. NQ_Modifiers use a function
pointer to queue their events, and provide a routine which checks a single event
against their list of events. For instance, the NQ_Keypad_Modifier will queue
keypad events (init_extern_read) which it uses to modify its state. It then will test
keypad events (handle.event) to actually modify its state. The
NQ_Spaceball_SGl_Mod works the same way (since the SGI spaceball uses the
event queue) NQ_Modifiers will work with any device queuing scheme which
uses the GL device tokens. This guide presents examples with both the GL device
queue and the forms device queue.

A-52

Other Modifiers

Other modifiers do not use the event queue. These include the MouseJVlod
(mouse inputs), the Spaceball_Mod (Dimension 6 spaceball) and the
Polhemus_Mod (Fastrak head tracker). Other modifier class possibilities include
modifiers based on forms (sliders/buttons) or the Fakespace boom.

6.11 DIS Classes

BaseJNetJPlayer

The Base_Net_Player implements a standard remote or local network entity. It
includes appearance fields, data fields for the round earth data coming from the
network, and a virtual function (accept_damage) used to notify local entities when
a network event affects them. Player classes can be inherited from this class.
Base_Net_Playei also includes a ModeLManager*, used so the entity can be
model switched to maintain correct appearance.

Sim_Entiiy_Manager

This class handles several network interface functions. They include receiving
network events and processing them against local entities, removing unneeded
player references, and model switching local and remote entities. Local and
remote entities are entered with the register jjlayer method. They remain until
their entity_state member becomes 'inactive', at which point the reference is
removed. Players are registered as either LOCAL or NETWORK.

If a player calls register_player, the Sim_Entity_Mgr will perform several
functions. It will model switdh the player if the appearance fields change. LOCAL
players will have appearance managed by this class if they are registered and they
change the appearance fields in the Base_Net_Player portion of their member data.
Sim_Entity_Manager will test events against all LOCAL players and call the
accept_damage method when an event affects the player. It will also insert effects
into the scene graph as appropriate.

The player list is available as a list, of simulation entities. This is a shared memory
array of pointers to players which reflects all registered players.

A-53

Vita

Capt Mark Snyder was born in Al,water, CA, in 1964. lie was commissioned

via the Air Force Reserve Officer Training Corps in May, 1987, with a bachelors

degree in Computer Science from Arizona State University, lie entered active duty

in January, 1988, at Keesler AFB, Mississippi. After graduating at the top of his

technical training course, he was assigned to the Space and Warning Systems Center

at Peterson AFB, Colorado, as a programmer for the USSPACECOM Intelligence

Center. After two years of supporting this operational system, he transferred to

the development directorate as an Ada programmer for Granite Sentry and the

Mission Support Segment of the Mobile Command and Control System, where he

was involved in multiple software reuse efforts. lie entered AFIT in May, 1992.

Permanent address: 14900 E 43rd Ave
Denver, CO 80239

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704 0188

Public reporting burden lor thii tollection of information is estimated to average ' hour per roiponsc. includmq the time for reviewing instructions, searching existing aata source
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect ot this
collection of information, including suggestions tor reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4 302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE
December 1993

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

OBJECTSIM - A REUSABLE OBJECT
ORIENTED DIS VISUAL SIMULATION

5. FUNDING NUMBERS

6. AUTHOR(S)

Mark I. Snyder, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/93D-20

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(E5)

ARPA/ASTO

3701 North Fairfax Drive

Arlington, Va 22203

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

', 11. SUPPLEMENTARY NOTES " •

12a. DISTRIBUTION!/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

.

13. ABSTRACT (Maximum 200 words)

This research designed and implemented a reusable Distributed Interactive Simulation (DIS) visual simulation
architecture for Silicon Graphics platforms. The goal was to research software architecture technologies and
to create a design and implementation using these ideas. The architecture was designed using object oriented
techniques to provide the ability to customize it via inheritance extension. The resulting design was implemented
using C++ and applied to several DIS visual simulation projects in the Graphics Lab at AFIT. The architecture,
named ObjectSim, was successful in its goal of providing a reusable core for the DIS visual simulation projects in
the Graphics Lab at AFIT. It provides simulation developers reusable capabilities in the areas of rendering, data
display, device interfacing, and DIS network interfacing. The projects designed and implemented with ObjectSim
exceeded their research goals. Data on reuse effectiveness and several different Performance areas was collected.

14. SUBJECT TERMS

Simulators, Distributed Interactive Simulation, Synthetic Environments,
Computer Graphics, Object Oriented Design, Software Architectures,
Software Reuse

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

8. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

NSN 7540-01-280-5600

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

168
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev
Prescribed by ANSI Std /3S-'5
2I)8-102

89)

